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NOMENCLATURE

crack length

ac critical crack length

A area

effective surface area based on the PIA model

An series constant in the anisotropic, plate displacement solution

AT total surface area

AF anisotropy factor

width of a plate

b_

B

reduced elastic stiffness

width of a uniaxial flexure (beam) specimen

series constant in the anisotropic, plate displacement solution

free surface half-length of an elliptical crack

C contour for unit circle integration

Ci constants in the anisotropic displacement stress solution

elastic stiffness

coefficient of variation of the i thvariable

gage section diameter

D half-width of a composite tensile specimen

flexural rigidities

effective flexural rigidity of an anisotropic plate
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D'CUbic effective flexural rigidity of a cubic plate

eccentricity of two cylinders

E Young's modulus

failure criterion written in terms of a unit, uniaxial principal stress

L probability density function

arbitrary function used in the displacement solution of an anisotropic plate

F applied force

FC failure criterion

G

critical value of a failure criterion for a materials resistance to unstable crack propagation

shear modulus

GI mode ] strain energy release rate

critical, mode I strain energy release rate

the ratio of the major to minor axes of an elliptical cavity

H(o-) step function to account for compressive stresses

/,. scale parameter invariant

ki reduced flexural rigidity

kt transverse sensitivity of a strain gage

kwps polyaxial crack density coefficient

average polyaxial crack density coefficient

kWS uniaxial crack density coefficient

kWS average uniaxial crack density coefficient

* effective, reduced flexural rigidity of an anisotropic plate
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k *cubic effective, reduced flexural rigidity of a cubic plate

KI mode I stress intensity factor

mode I fracture toughness

mode II stress intensity factor

Kill mode III stress intensity factor

length of the edge of a square plate (e.g. a biaxial test specimen)

m Weibull modulus

Mo applied moment

N crack density for a volume element

Nt safety factor for the tensile conditions considered

N_ safety factor for the compressive conditions considered

ratio of normal stress to strength averaged about the unit circle

Pac probability of a single crack being critical

P A ,0 probability of a single crack being in a location and having a particular orientation

PFA

probability of a crack existing

probability of failure for surface flaws

PFV probability of failure for volume flaws

PFx probability of failure for flaw population x

q pressure

radial position in a biaxial disk test specimen

rp radius of an anisotropic biaxial disk test specimen

R correlation coefficient for linear regression
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ec cross sectional radius of load ring used in ring-on-ring biaxial testing

ed radius of an isotropic plate (e.g. an isotropic biaxial disk test specimen)

Ri radius of inner (load) ring of ring-on-ring biaxial test fixture

ell reliability of a component with n cracks

RO radius of outer (support) ring

es radius of support ring in pressure-on-ring test fixture

surface for unit sphere volume integration

Si inner span of a four-point flexure test

So outer span of flexure test

Sij elastic compliance

SUCS ultimate strength in compression

Suts ultimate strength in tension

s FlexuT_s ultimate strength in uniaxial flexural

s POR

vrs ultimate biaxial strength of an isotropic material as determined by pressure-on-ring

loading

s POR

u_s,_.b_c ultimate biaxial strength of an anisotropic material with cubic symmetry as

determined by pressure-on-ring loading

SDxi standard deviation of the xi variable

biaxial disk test specimen thickness

T torque

V volume

VT- total volume
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w plate deflection in the z direction

]42 o particular solution for the displacement of an anisotropic plate

W height of a uniaxial flexure (beam) specimen

abscissa as measured from the center of a plate or rod

location on surface

ordinate as measured from the center of a plate or rod

distance from mid-surface of the plate ranging over + t/2

mode I stress intensity factor coefficient

mode H stress intensity factor coefficient

z ratio of tensile Weibull modulus to compressive Weibull modulus

measured major principal strain component

Sq measured minor principal strain component

measured minor principal strain uncorrected for transverse sensitivity

A

S
P measured major principal strain uncorrected for transverse sensitivity

Sx strain in the x direction

sy strain in the y direction

A

Si measured strain uncorrected for transverse sensitivity; i = 1,2,3

angle from the xy plane

q_

counter clockwise angle from the x axis

phase angle between the <100> crystal direction and the principal stress

shear strain in the xy plane
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the fracture surface energy

F(]lm) the gamma function of lira

q ratio of tensile strength to compressive strength

q_ counterclockwise angle from the x axis

coefficient of friction

p; complex root

v Poisson's ratio

vo Poisson's ratio of strain gage manufacturer's calibration material

angle from the first principal stress

O angle from the <100>direction

o'b stress due to bending

Oc,. critical stresses for flaw failure

O'eq equivalent stress

Gemax maximum effective stress (Batdorf model)

average unit volume strength in the direction of the i principal stress

Gi i'h principal stress (i = 1,2, or 3)

Cartesian stress component

G'Ieq mode ! equivalent stress

O'MAX maximum stress

O" m minimum strength in the Weibull distribution

0"/7 normal stress on the crack plane
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_,,<hkt> the normal stress in the <hkl> direction

o'o scale parameter or unit strength

O'o<hkl>scale parameter in the <hkl> crystal direction.

measured major principal stress

Crq measured minor principal stress

o't tensile stress

o'e characteristic strength (i.e. strength for a 62 % probability of failure in the Weibull

distribution)

_.,. radial stress

O'oo tangential stress

_-o shear stress

O's correction term for the effect of lateral stresses on plate deflection

stress in the x direction

ay stress in the y direction

critical tensile stress at the surface of an elliptical flaw

shear stress resolved on the crack plane

shear stress in the xy plane

twist per unit length

f2 solid angle

scalar reliability function for whisker reinforced ceramics
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ABBREVIATIONS

BGC Batdorf's criterion for a Griffith crack

BGN Batdorf's criterion a Griffith notch

CERR coplanar energy release rate

EDM electro-discharge machining

MHSF maximum hoop stress factor

MP maximum principal stress

NERR non-coplanar energy release rate

NS normal stress

PIA principle of independent action

P-O-R pressure-on-ring

SIFC stress intensity factor coefficient

R-O-R ring-on-ring
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CHAPTER 1" INTRODUCTION

1.1 BACKGROUND ON NICKEL ALUMINIDES

The efficiency and lifetime of a turbine engine component is limited by the ability of the material

comprising the component to sustain stress at elevated temperatures. In order to increase the

turbine operating temperature and improve the efficiency, traditional turbine component alloys

have been improved and a variety of non-traditional or advanced material systems (e.g. ceramics,

intermetallics and composites) have been developed and investigated (Molloy 1990). Advanced

material systems may exhibit an effect of test specimen dimensional scale on mechanical

properties (e.g. ceramics), or anisotropy on both macro and micro scales (e.g. laminated

composites) because the materials are no longer homogeneous isotropic mediums but structures.

Design methodologies for traditional turbine alloys generally do not address such considerations,

and thus new design methods need to be developed as non-traditional materials emerge and are

considered viable for engine applications.

A variety of alloys of intermetallic composition have been developed (e.g. NiAI, TiAI, Ti3AI, Nb3AI

and MoSie) in an attempt to further increase the operating temperature of turbine engines (Ashley

1991, Sauthoff 1995). Intermetallics have a unique atomic ordering that can result in congruent

melting and unique properties. Nickel aluminide (NiAI) intermetallics, in particular, have low

density, high thermal conductivity and high oxidation resistance as compared to nickel-based

superalloys such as Ren6' N5, Table 1.1.1 (Walston and Darolia 1993). A detailed review of the

physical properties of intermetallic NiAl's has been given by Noebe et al. (Noebe et al. 1993). The

term "NiAI" will be used to refer generically to any compound in the B2 NiAI phase field.

The beneficial properties listed in Table 1.1.1 make NiAI alloys possible candidates for turbine

applications. A further step used to improve the elevated temperature capabilities of NiAl's has

been the application of the creep limiting mechanisms used to improve the elevated temperature

capabilities of traditional nickel-based alloys. A variety of mechanisms have been used to

improve the creep resistance of traditional alloys used in turbine engines. One mechanism is the
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precipitation of second phase particles throughout the matrix via modification of alloy composition

and heat treatment. The second phase particles inhibit dislocation motion and the resulting creep

deformation. Another improvement in traditional turbine engine alloys that occurred after the

development of second phase precipitates was the generation of single crystal materials, which

have been used in turbine engines for a decade. The improved creep resistance of single crystal

superalloys results from the lack of grain boundaries, which act as sites for accelerated creep

deformation. As a result of these improvements, the creep resistance of turbine alloys has

improved substantially, thereby allowing an increase in turbine temperatures as shown in Figures

1.1.1 and 1.1.2. However, such improvements in elevated temperature capability are ultimately

limited by the melting point of the alloy system and materials systems with higher melting points

are desired (Fischer and Webster 1990).

The application of traditional creep limiting mechanisms (e.g. precipitation of a second phase in a

single crystal) to intermetallics has resulted in single crystal NiAI alloys that are ideal candidates

for turbine applications with one serious exception" a lack of" ductility stemming from the limited

dislocation motion and contaminant creep resistance. The room temperature fracture toughness

of binary polycrystalline NiAI is on the order of 4 to 6 MPa_/m (Noebe et al. 1993), and 8.7 + 0.7 to

10 MPa_/m and 4.4 + 0.4 MPa_/m for the {100} and {110} planes _ of single crystals, respectively

(Chang et al. 1992, Reuss and Vehoff 1991). Thus, these alloys "are not currently used in aircraft

engines because room temperature fracture toughness and ductility are not high enough to allow

assembly and maintenance operations" (Blankenship et al. 1995).

Further, because of the low fracture toughness of single crystal NiAI, the strength of NiAI may

dependent on the surface finish and the flaw size distribution throughout out the microstructure.

Thus the fracture characteristics of some alloys are probably similar to those of classical brittle

materials such as ceramics and glasses with two exceptions- elastic anisotropy, fracture

toughness anisotropy and limited but possibly significant plastic deformation under specific

conditions such as pure compression (Noebe et al. 1993).

Conventional Miller indices and notation are used to describe crystallographic planes and

directions in this dissertation" (hkl) defines a specific crystal plane; {hkl} defines a family or group

of identical crystal planes except for the arbitrary choice of the x-, y-, and z-labels on the axes.

Similarly, [hkl] and <hkl> correspond to specific directions and families of directions, respectively

(Van Vlack 1975).
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The lack of grain boundaries in single crystal NiAI results in a continuum, as in glass. However,

the presence of a crystal structure and flaws such as coarse precipitates, inclusions, pores, etc.

should create a material more similar to a monolithic ceramic. Also, because the material is a
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single crystal, the fracture toughness varies with orientation, as noted previously, and a

preferential fracture path(s) or cleavage plane(s) exists. This results in an anisotropic strength

distribution.

It should be noted that low fracture toughness has not eliminated materials from application in

turbine engines. In the case of ceramics, viable turbines vanes and nozzles in ground based

auxiliary power units were achieved through better processing, machining, and handling that

made the components stronger and more reliable, and through reliability analysis that accounted

Table 1.1.1" Physical properties of NiAI, NiAI alloys and an advanced superalloy (Walston and

Darolia 1993).

Property

Bonding

Melting Point

Density

Young's Modulus, Polycrystal

Young's Modulus - <100>

Anisotropy Factor

Shear Modulus, Polycrystal

Poisson's Ratio

Ihermal Expansion

Specific Heat

Thermal Diffusivity

ThetFnal Conductivity

Electrical Resistivity

Units

oC

g/cm _

Temp,

oC

RT

GPa RT

GPa RT

RT

GPa RT

RT

10 "_/°C 600

J/g°C 600

cmZ/sec 600

W/m°C 600

#ohmcm RT

NiAI

Covalent/Metallic

1682

5.9

188

88

3.25

71.5

0.313

13.2

0.64

0.22

76

8-10

NiAI alloys [_]

Covalent/Metallic

1610-1676

up to 6.30

188

88

-3.25 [2]

-71.5 [2]

-0.313 [2]

13.7

0.61-0.64

0.1-0.22

35-76

10-30

[1] NiAI alloys containing primarily 13'precipitates and less than 5 atom percent alloying additions.

[2] Estimated assuming no effect of alloying on the elastic constants.

Advanced

Superalloy

Metallic

1390

8.60

205

130

2.72

74

0.380

13.5

0.46

0.033

15

120-140
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for the wide dispersion in strength (Schenk 1999, Price 1999). In the specific case of silicon

nitrides, continued research on processing routes that elongate the grain structure and thereby

provided "in situ toughening" have nearly doubled (5 MPa_/m vs 8 MPa_/m) the fracture toughness

(Li and Yamanis 1989), further encouraging applications of what is a low fracture toughness
material.

Thus, presuming maintenance and assembly operation can be sufficiently modified, the use of

NiAI single crystals in turbine applications, such as vane and blades, will require component

design methods that consider the elastic and strength anisotropy, the brittle behavior and the

possibility of a wide size distribution of surface and volume distributed flaw populations.

1.2 PROBLEM STATEMENT

The guiding objective of this work is to further the knowledge and understanding of the failure of

anisotropic, brittle materials and to develop component design capabilities for such materials.

The overall goal of this dissertation follows:

Develop and verify a model for the structural design of anisotropic, brittle monoliths such as single
crystal NiAI.

Specific objectives comprising this goal are as follows.

1.3 OBJECTIVES

(1) Determine the elastic constants of the material.

(2) Determine the mode of failure and the source, composition and structure of strength limiting
defects.

(3) Measure the uniaxial and biaxial strengths of the material for relevant crystal orientations.

(4) Determine the appropriate statistical distribution for characterization of the materials strength.
Develop appropriate reliability model and failure criterion.

(5) Verify the model and criterion.
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CHAPTER 2" REVIEW OF THE PREVIOUS WORK

2.1 FRACTURE OF BRITTLE, SINGLE CRYSTALS

Brittle single crystals such as sapphire, diamond, mica, etc. frequently fracture along specific

planes defined by the crystal structure, even when the externally applied stresses are not a

maximum on the specific planes. This phenomenon is referred to as cleavage and implies "that,

other things being equal, cracking will proceed along the cleavage plane" (Fre'chette 1990). The

extent or quality of cleavage is typically described as "perfect, good, distinct or indistinct,"and is a

result of both the nature of the crystal and the applied stress state. When the stress state is

sufficiently misaligned, even crystals with a distinct cleavage plane will exhibit a 'conchoidal'

fracture surface, or "that is, forming fracture surfaces fancied to resemble certain sea shells"

(Fre'chette 1990). Some crystals, such as quartz, SiO2, do not exhibit a distinct cleavage.

Polycrystalline materials and materials without a microstructure, such as glass, fracture

conchoidally with the fracture features being controlled by the stress state and crack dynamics.

Although cleavage has been described as "the separation of atomic planes in the absence of any

plastic flow" (LeMay 1981), some semi-brittle metals and non-metals exhibit large dislocation

densities and regions of stable crack growth on the 'perfect' cleavage plane. This behavior is a

function of temperature and strain .rate (Hirsch et al. 1992).

For ionic and covalently bonded single crystals, the cleavage plane was thought to be best

predicted by a fracture energy criterion (Schultz et al. 1994, Hayashi 1982):

27i-K,_/E- 2O'c,._ a - Gic (1)

where 7_is the fracture surface energy, Gz_is the mode I strain energy release rate, Kz_ is some

measure of the mode I fracture toughness and E is the elastic modulus in the direction of interest.

Note however, that Equation (1) is an approximation of the energy release rate for an anisotropic

material. For collinear crack extension, the conversion of the stress intensity factor into fracture

energy for an orthotropic system should be done using (Sih and Leibowitz 1967)

NASA/TM--2002-210519 7



2 ) LL- -77  +

1/2

2S,2 + 566 [

2Sll J

(2)

where the Su's are the single crystal elastic constants (compliance's), Kz is the mode I stress

intensity factor and GI is the mode ! strain energy release rate. In the case of a cubic system such

as NiAI, SI_ = $22 and 544 -- $66, Self-similarity was invoked in deriving the equation and thus the

crack must coincide with one of the principal axes of material symmetry (Sih 1979).

Note that there are two different formulations of Equation (2) published in two different works (Sih

and Leibowitz 1967 and Sih 1979). The later publication (Sih 1979) of this formulation does not

include the _ term and $66 is replaced by $22. This is a result of the form of the stress intensity
factor chosen in the derivation.

Although the above solution is for the principal axes of material symmetry, Yoo and Fu (Yoo and

Foo 1991) applied Eq. (2) to a {110} orientation of NiAI, which though not the principal axis of

elastic symmetry is a plane of elastic symmetry. They calculated the theoretical stress intensity

factor from theoretically derived energy release rates. Because the tensor for such a

transformation is less populated than an orthotropic matrix, Eq. (2) should be applicable. Also,

they applied Eq. (2) to the {100}, which is the principal plane of symmetry, however, it has been

reported that collinear crack extension does not occur (100) (Chang et al. 1992). Note that

collinear crack extension typically only occurs on the cleavage plane.

Metallically bonded materials are less prone to distinct cleavage because of the plastic flow

allowed by the metallic bonding. However, iron, low carbon steel, tungsten, molybdenum,

chrome, (all body centered cubic) and zinc, beryllium and magnesium (all hexagonal close

packed) exhibit cleavage under the appropriate conditions. Although a stress criterion is implied

by Broek (Broek 1982) for describing metallic cleavage, NiAI has a combination of covalent and

metallic bonds and thus a fracture mechanics based energy criterion might be the most

appropriate. Further, if small flaws exist, the reliability analysis of NiAI materials should be

fracture mechanics based instead of based purely on strength relations.
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2.2 CLEAVAGE OF NiAI SINGLE CRYSTALS

Cleavage of NiAI has been studied in some detail (Chang et al. 1992, Vehoff 1992). Pascoe and

Newey (Pascoe and Newey 1968) reported that cleavage of a NiAI single crystal tested in

compression occurred on the {110}.

Chang et al. used electro-discharge machining (EDM) notched four-point flexure specimens to

estimate fracture toughness and determine the cleavage plane of various NiAI alloys. For binary

NiAI, the fracture toughness and standard deviations on the {100}, {110}, and {111} families of

planes were 8.28 + 0.73, 4.53 + 0.44, and 5.00 + 0.16 MPa_/m, respectively, implying a {110}

cleavage plane. The fracture plane of the {100} specimens turned away from the notch plane and

macroscopically aligned itself with the {110}, whereas the crack path was macroscopically

coplanar for the {110} specimens, again implying {110} cleavage. It should be noted that Chang's

fractograph's (Figure 6(a), pp. 2732) indicate that failure may have occurred from a point along

the notch front rather than from the whole notch front in a quasi-static fashion as is assumed in

calculation of the stress intensity factor. Such unstable fracture in four-point flexure can results in

small errors in the calculated fracture toughness (Baratta and Dunlay 1990). However, little

scatter is apparent in the data via the standard deviations listed above, and the data thus seems

to illustrate the relative toughness of the planes reasonably. Another complication with Chang's

data is the statement "the maximum load was used to calculate the fracture toughness, Ko,

according to the equation ASTM E399." The American Society for Testing and Materials (ASTM)

Test Method E 399 (ASTM E 399 1995) makes no provision for fracture toughness calculation

from four-point bend tests or from maximum load unless specific conditions are fulfilled.

Although Chang (Chang et al. 1992) concluded that the {110} was the cleavage plane, they

observed {511} transition planes at the tip of {110} EDM notched specimens. The occurrence of

{511} transition planes were also noted by Bain and Darolia (Bain and Darolia, unpublished work

that is reported in Chang et al. 1992) on the fracture surfaces of {100} chevron-notched flexure

specimens, and on the surfaces of smooth strength specimens which also showed {110} facets

and other high indices facets (Chang et al. 1992). However, on a low fracture toughness NiAI

alloy (Ni-46AI, Kc = 3.05 + 0.06 MPa_/m for (110)<001>), no transition planes were observed

(Chang et al. 1992). Although no specific explanation for the transition planes was given, it seems

that the planes result from the crack dynamics and energy and constraint conditions at fracture.

In the low fracture toughness material, the energy at failure can be dissipated without transition of

the crack path onto planes such as the {511}. However, in the alloy with greater fracture

toughness, the conditions at fracture were apparently sufficient to cause the crack to follow
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multiple paths. In the {100} chevron-notched specimens (of the high fracture toughness alloy), the

{511} transition planes occur because the crack can macroscopically follow the high toughness

{100} notch plane, which it is macroscopically constrained via the notch, by transiting locally to

{511} planes. A substantially greater fracture toughness measurement resulted. Chevron-notch

measurements of the {110} were in good agreement (4.61 MPa_/m) with EDM notched data,

implying equivalence, and no {511} transition was noted. The stable crack growth generated by

the chevron notch probably kept the energy condition such that {511} transition was not necessary

for energy dissipation. The materials tested by Bain and Darolia (Bain and Darolia unpublished

work) are an early version of the material studied in this research.

DeMarco and Ardell (deMarco and Ardell 1996) concluded that neither the {100} nor the {110}

were the preferred cleavage planes, but probably the {511} or {711} were, based on the work of

Daroila et al. (Darolia et al. 1993) and Schneibel et al. (Schneibel et al. 1993). Note that the {110}

is close to the {511} and {711}. In order to determine the cleavage plane, they indented 300 _m

thick 3 mm diameter disks with a Vickers indentor at a substantial force of 5 kg such that the

corners of the indentor were aligned with the [01 1-]and the [100] directions. The disks were then

loaded in biaxial flexure between to concentric rings, thus aligning the tangential stresses on the

classical (100) and (011) cleavage planes. They assumed equal probability of failure on all

tangential or radial planes, which, as they note is not the exact case for an anisotropic disk. The

stresses should be greater in the stiff crystallographic directions because the rings tend to enforce

a displacement boundary condition and the stiff directions resist deflection the most. Further, the

probability of failure is not only proportional to the stress, but to the ratio of stress relative to

strength in the particular direction. Thus the probability of failure should be greater for the {110}

plane because it has low fracture toughness and strength and is twice as stiff as the (100). Stress

analysis might help clarify the results. Note that the disks used were "thick" for the range of plate

theory (Diameter/thickness = 10) and significant shear may have developed through the section

thickness (Adler 1991).

Crack extension occurred initially on the macroscopic (100) plane. However, no distinct (100)

facets were visible or identifiable on the surfaces, implying that the (100) was not the cleavage

plane, but a plane near the (100) such as the {511} or {711} planes. Note that the published

fractographs of (100) fracture surfaces look like typical fracture surfaces in which a stress wave

has interacted with the extending crack (i.e. conchoidal fracture), as would be expected for an

isotropic material or an unfavorable orientation. Note that 5 kg is a very large indentation load for

a 300 gm thick disk and may have induced sever deformations and residual stresses that may

have influenced the results, particularly if the deformation was anisotropic.
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Figure 2.2.1"The {110} dodecahedral family of surfaces.

NASA/TM---.2002-210519 11



After the initial crack extension on the (100), the test specimens were loaded until a second failure

occurred. As the stresses on the (100) were probably partially relieved, failure occurred near but

not exactly on the (011) from the corner of the indentation (i.e. near 90 ° to the first failure).

Although large, flat surfaces resulted, no specific facets could be identified. Because the stress

and deformation state of such a case is complex, a clear conclusion from these results is difficult.

Deformation and strain energy may have driven the crack plane off the expected cleavage plane.

The use of a more uniform stress concentration (e.g. spherical) or precrack along with stress

analysis might have given clearer results.

The conclusion by Chang et al. that {110} is the cleavage plane of NiAI and that other high index

planes such as the {511} form as a result of energy conditions and crack dynamics is in

agreement with results presented in section 5.4.4. The {110} set of planes forms the

dodecahedral surface shown in Figure 2.2.1.

2.3 ANISOTROPIC FRACTURE MECHANICS

As shown in section 2.2, the effects of anisotropy in fracture mechanics and energy release rate

calculations are occasionally ignored either because of lacking information (e.g. elastic constants)

or inattention to detail. Sih et al. (Sih, Irwin and Paris 1964) demonstrated that stress intensity

factor solutions for isotropic and orthotropic materials are identical for infinite plates with

symmetric and asymmetric self-equilibrating loads. Also, for finite rectangular test specimens of

sufficient length subjected to tension or pure bending, the effects of orthotropic elastic properties

are only marginal for a material such as wood with E.,.:E,,= 20"1 when tested along or across the

grain (Walsh 1972). A "sufficient length" is a length-to-width ratio of approximately 6:1 to 8:1 or

greater. The standard flexure test specimen for strength testing of ceramics (ASTM C 1161

1990) is frequently used for fracture toughness testing (e.g. ASTM C 1421 1999). It has a

constant moment section of 20 mm, a support span of 40 mm and a width of 4 mm when turned

on edge, giving a ratio 10:1. Thus, standard flexure test specimens would be of "sufficient length"

to avoid error when tested on the standard axes. Further, NiAI is substantially less anisotropic
than common woods.

For more general cases of anisotropy (Le. for a crack is located off the axis of elastic symmetry in

an orthotropic material), Kanninen writes (Kanninen and Popelar 1985) "the stress intensity

factors are in most practical cases just the same as for isotropic bodies. In particular, except
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when unbalanced loads act on the crack faces, the stress intensity factors will be independent of

the materials constants and therefore will be identical to the K values derived in isotropic fracture

mechanics. This holds for each of the three possible modes of crack extension." However,

Kanninen and Popelar note that one complication arises: "The difficulty in the anisotropic case is

that crack extension will not necessarily occur in a planar fashion. However, because the

mathematical difficulties involved in treating angled cracks is prohibitive, this complication is

usually ignored." Thus, for brittle materials that exhibit small amounts of stable crack extension

prior to catastrophic failure, the assumptions noted to be typically applied seem reasonable.

With the assumption given above, the main complication remaining in generation of fracture

mechanic data on single crystals is the effects for off-axis testing on the stress state and thus on

the stress intensity factor. However, as can be noted from the stress-strain compliance tensors

below and the equation for the displacements of a beam subjected to pure bending, no twisting of

the sections of cubic single crystals typically tested for cleavage energy should occur. The

tensors given in Equations (3a) to (3e) were calculated from standard transformation equations

(Wortman and Evans 1965, Turley and Sines1971) The ah' and x2' axes are normal and parallel to

the crack plane and growth direction specified below, respectively:

0oo)(oo )

[1.0428 -0.4210 -0.4210 0 0 0 ]

[-0.4210 1.0428 -0.4210 0 0 0 ]

[-0.4210 -0.4210 1.0428 0 0 0 ]

[0 0 0 0.892 0 O]

[0 0 0 0 0.892 O]

[0 0 0 0 0 0.892]

(3a)

(11o)(oo )

[ 0.5339 0.0879

[ 0.0879 0.5339

[-0.4210 -0.4210

[0 0

[0 0

[0 0

-0.4210

-0.4210

1.0427

0

0

0

0 0 0

0 0 0

0 0 0

0.8920 0 0

0 0.8920 0

0 0 2.9275]

(3b)
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[0.5339

[-0.4210

[0.0879

[0.3739x10 -5

[0

[0

-0.4210

1.O428

-0.4210

-0.7477x10 s

0

0

0.0879

-0.4210

0.5339

0.3739x10 -s

0

0

0.3739x10 -5

-0.7477xl 0.5

0.3739x10 s

0.8920

0

0

o o ]

0 0 ]

0 0 ]

0 0 ]

2.9275 0.7477xi0 -5]

0.7477xI0 _ 0.8920]

(3c)

[0.5339

[-0.0393.

[-0.2937

[-0.4407

[o

[o

-0.0393

0.3749

-0.1347

-O.11018

0

0

-0.2937

-0.1347

0.6293

0.5509

0

0

-0.4407 0 0 ]

-0.1102 0 0 ]

0.5509 0 0 ]

2.0370 0 0 ]

0 1.4009 -0.8814]

0 -0.8814 2.4187]

(3d)

[ 0.3643

[-0.0817

[-0.0817

[o

[0.2036xl 0.8

[o

-0.0817

0.5339

-0.2514

0

-0.4799

0

-0.0817

-0.25137

0.5339

0

0.4798

0

0

0

0

1.5705

0

-0.9596

0.20356x 10.8 0 ]

-0.4798 0 ]

0.4798 0 ]

0 -0.9596]

2.2491 0 ]

0 2.2491]

(3e)
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The displacement of a plate subjected to pure bending is given by (Whitney and Dauksys 1970,

Ressner and Stavsky 1961)

3M° 12 IS, (4x' -1)+ S,6R(4x'y'-t-1)+ S 2R (4y '2 1)] (4)W--_ 2 2 _

2h 3 1 1

where t is the plate thickness, b the width, l the length and x' - x/l, y' - y/b and R - b/1. The

positive and negative signs in the second term are associated with 816 > 0 and 816 < 0,

respectively. At the corners of the plate (i.e. x' = + 1/2, y' = + 1/2) this reduces to

_+3M o 12 I-,_ -I
]42 -- 3 [_ 16RJ (5)

t

Because no 816 terms are present in the transformed tensors shown in Eqs. (3a) - (3e), "liftoff"

(i.e. loss of contact) along the supports via twisting should not occur for cubic single crystal NiAI

subjected to pure bending. However, in bending configurations with shear (e.g. three and four-

point bending), shear-twist coupling will occur if $56terms exists. If bend twist coupling were to

occur, fixtures that do not allow articulation of the load line could induce a shear stress and a

mode II! stress intensity factor on precracked specimens. Such an effect would occur for the

reported {511} transition plane because the tensor is fully populated, making direct measurements

on such a plane difficult.

2.4 MECHANICAL TESTING OF BRITTLE, ANISOTROPIC MATERIALS

2.4.1 Elastic Properties

The single crystal elastic constants of NiAI have been measure by for a variety of conditions and

compositions (Wasilewski 1966, Rusovic' and Warlimont 1977). Wasilewski determined the room

temperature elastic constants of 50.6 atom percent AI NiAI by resonance of cylindrical rods in

longitudinal and torsional modes. The reported constants were C_ = 211.5, C¢2= 143.2, and C44

= 112.1 GPa. Note, that Wasilewski's data in Ibf/in2 do not agree with his data in dyn/cm 2 by

~1.5%. It appears that the data was measured in dyn/cm 2and converted to Ibf/in2 by a factor of

6.995 instead of the accepted value (Mechtly 1973) of 6.895. The values given in dynes/cm 2 are

presumed to be correct and used in the following calculations made in order to give a
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crystallographic perspective to the moduli. The elastic modulus varies from a minimum of 95.9

GPa in the <100> to a maximum of 275 GPa in the <111> direction, with an intermediate value of

187 GPa in the <110>, as shown in Figure 2.4.1. Note also that Wasilewski reports a single value

for the shear modulus of <110> specimens as determined by torsion of the {110} plane. Actually,

the shear modulus of the {110} plane is a function of direction, and value reported is the apparent

value (Hearmon 1961) given by

c - 2/(s 
For the (100) and (111 ) planes, the shear modulus is not a function of direction and the values

reported are representative of all directions in the specified plane.

(6)

Rusovic' and Warlimont used the pulse-echo technique with wave polarization to measure the

constants for 50 atom percent AI NiAI. The reported values were Cll = 198.5, C12= 137.5, C44=

116 GPa, in reasonable agreement with Wasilewski.

The elastic anisotropy factor (AF - 2C44/(Czz -C_2 ) ) ranges form 3.2 to 3.3 for this data. This

value is intermediate to other metallic single crystals such as aluminum which is nearly isotropic

(A = 1.2), and ,6-Brass (A = 8.5) which is strongly anisotropic.

2.4.2 Uniaxial Flexure Testing

The requirements for uniaxial flexure testing of brittle materials have been studied in detail

(Hoagland et al. 1976, Baratta et. al. 1987, Quinn 1990), and a frequently used standard test

method exists (ASTM C1161 1990). The standard does not address elastically anisotropic

materials specifically, but does provide for an articulated fixture so specimens with as-processed

tolerances, which are typically poor, can be tested. Such a fixture might be capable of

accommodating any bend-twist coupling encountered in a generally anisotropic beam, however,

the effects can be severe (Whitney and Dauksys 1970). Ideally, bend-twist coupling should be

avoided by testing axes of symmetry.

The standard also allows for three and four-point flexure of three different size specimens. Thus,

standard test specimens can be used in the determination of size effects on strength.
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Figure 2.4.1" The elastic modulus E<hk_>of binary NiAI as a function of orientation

in (a) the {100}, and (b) the {110}. The single crystal elastic constants of

Wasilewski (Wasilewski 1966) were used in the calculations.
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Figure 2.4.2" Typical fracture pattern resulting from flexural failure of a brittle

material (Military Handbook 790 1992).
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Considering the ingot sizes that were available in this study, either the "A" (1.5 by 2.0 by 25 mm in

height, width and length, respectively) or "B" (3.0 by 4.0 by 50 mm, respectively) specimens were

usable. For a wider range of test specimen sizes, a miniature test specimen can also be

designed based on published recommendations (Hoagland et al. 1976, Baratta et. al. 1987, Quinn

1990). The advantages of flexural testing are, depending on one's viewpoint, the small amount of

required material, the simple geometry, the sensitivity to surface connected defects and the

frequency of use in data measurement. One major advantage borne out in these results is the

asymmetric fracture pattern that results from the primary crack intersecting the compression side

of the beam, as shown in Figure 2.4.2. This pattern makes identification of the failure origin

relatively easy, even when the test specimen fragments into dozens of pieces. In contrast, tensile

strength tests generating a uniform stress state typically produce many symmetric failures and the

primary failure plane is very difficult to identify.

2.4.3 Biaxial Flexure Testing

Biaxial flexure testing has been studied in some detail (Rickerby 1977, Adler and Mihora 1991,

Vitmar and Pukh 1963, Ritter et al. 1980, Shetty et al 1983) and at least one full consensus

standard exists (ASTM F 394 1978). Typically three different loading assemblies, shown in Figure

2.4.3, are used to flex circular or square plates" ball-on-ring (B-O-R), ring-on-ring (R-O-R), and

pressure-on-ring (P-O-R). For model verification, the R-O-R or the P-O-R is typically used, as

more of the test volume is subjected to large stresses. Very little published work (DeMarco and

Ardell 1996, Chen and Leipold 1985) on biaxial testing of single crystal plates is available in the

open literature. However, a review of the isotropic literature is useful as it points out some of the

complications and interfaces to be avoided in the design of biaxial test rigs.

The P-O-R has the advantage that no frictional or contact stresses are developed in the highly

stressed regions, thereby avoiding a "spike" in the stress distribution. However, friction will occur

in P-O-R specimen at the support ring. The frictional effects can be minimized by lubricating the

support ring.

The radial and tangential stresses are not equal except at the center of the disk, and thus

somewhat less effective area is tested than with the R-O-R. Rickerby (Rickerby 1977) developed

a system that used a neoprene membrane to transmit pressure to the test specimen

(diameter/thickness = 17). The reported radial and tangential stress were in excellent agreement
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with plate theory at the disk center (<< 0.5% difference). At 40 percent of the support radius the

agreement was approximately 3.6 and 2.5 percent. However at 80 percent of the support radius

the differences were 25 and 2.4 percent, respectively. The large difference in radial stress toward

the edge of the specimen is less significant as the radial stresses is less than one-third of the

maximum stresses and thus does not effect reliability as much.

The biaxial test rig used by Shetty included a 0.25 mm spring steel membrane between the

specimen (diameter/thickness = 13) compressive surface and the pressure source (Shetty et al.

1983). Despite the presence of a membrane, the rig resulted in stresses in reasonable

agreement with plate theory. The measured stresses at the disk center were about 3.5% greater

than the theoretical predictions. The radial and tangential stresses were about 1.5 and 1.9%

greater at 25% of the disk radius, and at 80% of the support ring the radial stress error was 10%.

Reliability calculations are strongly dependent on the peak stress region, and thus the difference

must be small in the central region of the disk. Although the overall differences are not large (i.e.

only 10% toward disk edge), they are significantly larger than Rickerby's (Rickerby 1977) at the

high stress central region. This may be due to the restraining effect of the steel membrane.

The R-O-R specimen has display somewhat less accurate results as compared to the P-O-R

specimen. Adler and Mihora (Adler and Mihora 1991), in a detailed study, used a three

dimensional finite element analysis (FEA) that combined membrane stresses with bending

stresses and included large shear strains. "Slide surfaces" were used in the model to eliminate

the effects of friction between the load ring and plate. Thin plates (diameter/thickness > 20) were

found to experience combined membrane and bending stresses. Thick disks (diameter/thickness

< 10) underwent bending and shear stresses. A centerline deflection of 10% of the plate

thickness introduced substantial membrane stress that increased the tension face stresses. For

very thin plates the contact stresses associated with the loading ring were mirrored (i.e. wedging

stresses occur) such that a tensile face stress almost as large as the compressive contact stress

occurred. In the case of a ZnS disk with diameter/thickness = 23, the radial component of stress

under the steel loading-ring of 3 mm cross sectional radius, as measured with strain gages,

increased by 55% as compared to the expected value. Note that uniaxial strain gages were used

and transverse (up to ~5%) errors may not have been taken into account.

Adler also suggested and analyzed the use of an acrylic (Delrin) ring with a square cross section.

The square cross section ring resulted in substantially lower compressive contact stresses than
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even steel rings with a ratio of cross-section radius to plate thickness of 4"1. Because the

analysis was done at a maximum stress of 69 MPa, which is substantially less than the stress

required to fracture most intermetallic or ceramic materials, the Delrin ring may not be applicable.

Note also that all of the analyses assumed no friction. Friction can create substantial errors (5 to

15%) in four-point flexure tests (Hoagland et al. 1976, Baratta et. al. 1987, Quinn 1990) and

theoretical calculations indicated that errors as large as 50% can occur in R-O-R testing (Fessler

and Fricker 1984). To minimize its effect, a support ring consisting of roller bearings that are

allowed to roll could be used (Godfrey and St. John 1986). Use of a similar loading ring made of

balls would probably generate excessive contact stresses, and thus a soft (e.g. annealed copper)

continuous ring with a large cross-sectional radius, Rc, relative to the plate thickness, t, might be

used (e.g. R_/t ratio > 4). In order to minimize the friction and stress concentration from the upper

ring, a thin Teflon or rubber shim could be placed between the plate and ring. Verification of such

a configuration would require empirical analysis (e.g. strain gage analysis).

For the specific case of a 76.2 mm diameter disk with a Young's modulus of 100 GPa that was

loaded with steel rings of 3 mm cross-section radius, FEA calculations assuming no friction

resulted in radial stresses in good agreement with the thin plate theory of Vitmar and Pukh (Vitmar

and Pukh 1963) for diameter to thickness ratios between 20"1 and 6"1. The corresponding ratios

of ring cross-section radius to plate thickness for the example above are surprisingly small" 0.8:1

to 0.25:1. Note that the assumptions in most analytic models are that membrane stresses,

transverse shears and highly concentrated loads do not exist. So the choice of specimen

diameter, thickness, load-ring cross-section and elastic modulus are critical for each material

Vitman and Pukh's solution added a term (rg/R 2) to the conventional solution (Roark and Young

1975 or Timoshenko and Woinowsky-Krieger 1959) to account for the extra stiffening effect of
overhang:

O'max--0"'" --0"00 211_t 2 (1-v)R°-' R°z _(l+v) lnR°
2R2o R a

(7)

where F is the applied force, R; is the load or inner ring radius, Ro is the support or outer ring

radius, Rd is the plate radius, t is the plate thickness and v is Poisson's ratio. For a round plate

with no overhang, the (Ro2/R_) term goes to unity and the conventional solution is obtained. The

solution can be used for a square plate if an effective value of Rd that expresses the characteristic
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size of the plate is used. The approximate arithmetic mean of the circles inscribed by and

inscribing the square plate is suggested (Vitmar and Pukh 1963)

/8/

where I is the length of the edge. The maximum deflection for such a plate can be estimated from

(Vitmar and Pukh 1963)

8- 3F0-v2)R 2 O-v)(R2° -R_)R° Ro

2_Et 3 [R 2 1+ 2(l+V)Ro 2 -2-5 -l+lnRd _ (9)

where E is Young's modulus.

A closed form solution including friction, shear and overhang has been derived by Fessler and

Fricker (Fessler and Fricker 1984). The solution indicates that friction increases the stress in a

region ",0.25t outside of the loading ring by 50 percent for thick disks with a coefficient of friction of

0.4. Friction lowers the maximum stress within the loading ring. The result of friction is to bias the

failure toward the loading ring and lower the effective area as shown in Table 2.4.3.1. The

reduction in effective area is most significant for thick disks and large W eibull moduli, and results

in increased observed strength. Note that Equation (15) of Fessler and Fricker's stress solution

(Fes_ler and Fricker 1984)is missing the term (1-v)(Rs2-Rt2)/2RJ.

Of particular importance to our material is the requirement that deflection be less than 10% of the

thickness, as the strong, <001> orientation has the lowest stiffness (E<zoo>= 96 GPa). Based on

the analysis of Adler and Mihora, it may be difficult to design a ring-loaded NiAI specimen that can

be accurately described by Equation (7). Although strain gages and FEA could be used to

estimate the actual stresses and design an accurate R-O-R test specimen, it is probably simpler

to avoid the complications associated with the R-O-R specimen and to use the P-O-R specimen

instead. A further complication with the R-O-R specimen is the lack of a closed form stress

solution for single crystal materials. An even more compelling reason to use the P-O-R method is

that a closed from displacement solution exists for an anisotropic material subjected to uniform

pressure (Okubu 1949).
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Table 2.4.3.1" Effect of friction on the effective area, Ae, of a 25 mm diameter disk loaded between

10 and 20 mm diameter concentric rings. Poisson's ratio = 0.23. Values were calculated by

numerical integration of the PIA model (Barnett et al. 1967) model, see section 3.4.1, using the

stress functions of Fessler and Fricker (Fessler and Fricker 1984).

Coefficient of Friction

0.05

0.1

0.2

0.4

0.05

0.1

0.2

0.4

0.05

0.1

0.2

0.4

Weibull Modulus

/17

10

15

Effective Area, mm 2

Thickness, mm

1 2

235 235

230 226

226 218

218 202

202 172

197 197

189 182

182 167

167 142

142 102

184 184

173 162

162 142

142 110

110 70
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2.4.4 Uniaxial Tensile Testing

A variety of uniaxial, tensile test configurations for brittle, anisotropic materials have been

standardized (e.g., ASTM C 1273-95a 1999). Figure 2.4.4.1 shows tensile specimens that have

been used to test brittle materials. Unfortunately, most of these specimens are too large to cut

from the billets available in this work. Thus, design of a smaller test specimen that can be gripped

with a fixed collet system needs to be considered. The use of a fixed collet presents advantages

and disadvantages: precise alignment can be made if the proper fixtures are employed, and only

a short shank length is required. However, the fixed end-grip condition can result in shear

stresses for anisotropic materials tested off axis.

An analysis of the effects of fixed end-grips on displacements, strains and stresses for an

orthotropic material rotated about the z axis was done by Pagano and Halpin (Pagano and Halpin

1968). If the analysis is repeated for a cubic system the same equations result:

cv,.--2Coxy-2S_s coy 2 +C_y+C 2
$11

"Cxy - Co (Y 2 - D 2)

e.,. -S,,(-2Coxy+C,y+Ce)-S,eCo(y 2 +D 2)

[ 2S'8c°Y } "
-eCoX - +s ,co(y

$1,

7xy -Sle -2Coxy- $11

(10)

where D is the specimen half-width and the G's are combinations of the elastic constants and the

applied axial load. If the analysis is applied to the typical cleavage orientations in Section 2.3, no

shear stresses result in the xy (cross section) plane. However, for orientations such as the <511>,

etc., shear stresses on the order of 20 percent of the normal stress result.

Thus a small cylindrical test specimen as shown in Figure 2.4.4.2 could be used. The stress

concentration factor at the gage to shank region is estimated to produce a 2 to 3% increase the
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tensile stress (Peterson 1974). The concentricity tolerance requirements between the shank and

the gage section can be calculated from basic stress equations for a rod

(11)

resulting in a percent bending of

_b =8 e
o'--_ d (12)

where d is the gage section diameter, e the eccentricity. For two percent bending a concentricity

of 0.007 mm or less is required for the proposed specimen. Centerless grinding can attain such
tolerances.

Another issue associated with tensile testing is that both the center and surface of the test section

are subjected to the same stress, and the specimen fails from both surface and volume flaws. As

the flexure specimens are biased toward surface failure, predictions of tensile behavior from

flexure data is more complicated.

2.4.5 Torsion Testing

The advantage of torsion testing is that it produces a maximum shear stress equal to that of the

maximum normal stress instead of the 1:2 ratio generated in tension testing. Thus the opportunity

for ductile behavior is greater in the case of low ductility, and the sensitivity of the fracture strength

to combined stresses or shear, can be determined. This is particularly important for determining

the failure mechanisms of a material that exhibits yield under certain conditions and brittle fracture

under others, as the design might be geared toward yield.

No full consensus standards exist for torsion testing of brittle materials. In addition, torsion testing

of ceramics and NiAI has been performed infrequently (Blankenship et al. 1995, Petrovic and

Stout 1981, Oda et al. 1988). Torsion testing of <100> and <110> binary, NiAI single crystal rods

was performed by Blankenship et al. Specimens of <001> orientation exhibited ao<100>

dislocations and shear strain to failure of 0.11 + 0.03 whereas <110> orientations exhibited both

ao<100> and some ao<110> dislocations with a torsional strain to failure of 0.02 + 0.008. The

dislocation density was greater at the specimen surface than the center as would be expected for
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Figure 2.4.4.1" Tensile specimens used to test brittle materials (ASTM C 1273-

95a 1999). All dimensions in mm.
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Figure 2.4.4.2" Miniature tensile test specimen. All dimensions in mm.
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torsional loading. The shear modulus calculated from the tests were very different than reported

by Wasilewski (Wasilewski 1966) (G<1oo>=153+ 7 vs. 112.1 GPa and G<1_o>=160+ 27 vs. 52.5

GPa).

In contrast to the results of Chang et al. (Chang et al. 1992) which found near {110} and {511}

cleavage planes, Blankenship et al. found fracture facets oriented about 10° from the <001> or

near <112> fracture surfaces, in agreement with tensile results of Schneibel (Schneibel 1993).

For the <100> test specimens, their stress analysis indicated that the (112) and (110) were

subjected to a large normal stress yet the actual failure planes were within 18 o of the (100), which

was subjected to large shear stresses. For the <110> test specimens the (100) and (112) were

subjected to large normal stresses, however, the (001) and (1 1-2), which are oriented at 90 o to

the (110), were also subjected to large shears. Failure was observed on {001} and {112} type

planes. Although no strong conclusions were put forth by Blankenship et al., it seems that local,

shear induced failure occurs initially on the {100} planes and is linked together by local cleavage

near the {112}. Although the {110} is thought to be the natural cleavage plane, the large

orientation difference between the {110} and the shearing {100}, which is either 45 or 90 °, may not

have allowed failure to link onto the {110} but on a more favorably oriented {112}.

Blankenship et al. calculated stresses in NiAI with solutions for elastically isotropic materials with

out specific justification. This can be examined via the solution for an orthotropic rod in torsion

(Hearmon 1961). The stresses and angle of twist per unit length, _, are given by

a23 =4) C55(C + 1)x

cr13 =O C44(C - 1)y (13)

- 16T($44 + Sss )/Tr d 4

with c (c,, c44)/(c,,+c.)

where T is the torque, d is the diameter of the cylinder, and the x_'s are the distances along the

coordinate axes. The solution was generated such that the crystal axes, coordinate axes and

geometric axes of the rod were aligned. The solution applies to orthotropic materials in standard

position or materials of higher symmetry transformed such that the tensor is of an orthotropic
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form. For the (100)<001> and (110)< 110> tensors shown in section 2.3, the surface shear

stresses reduce to

cr2_ - -cr _ - 16T/_ d _ (14)

which is the solution for an isotropic medium.

Considering the size of the billets available for this study, the complexities of test specimen

design, specimen alignment and the machining costs associated with torsion testing, the use of

simple beam and plate specimens to generate both uniaxial design data and multiaxial model

verification data seems appropriate for brittle, anisotropic materials such as single crystal NiAI.

2.5 DETERMINISTIC DESIGN CRITERIA FOR BRITTLE MATERIALS

2.5.1 Stress-Based Criteria

2.5.1.1 Maximum Principal Stress

For materials that show little deformation or shear sensitivity upon fracture, the normal stresses

should control failure. As the maximum principal stress is the largest normal stress, this theory

proposes that a predefined form of failure ensues when the maximum principal stress exceeds

the strength. No specific flaw is assumed. Typically, the material's tensile strength is assumed

constant in all directions and a safety factor is applied to ensure survival and to account for load,

geometry and material property variations (Shigley and Mischke 1989). Compressive stresses

are treated in a fashion similar to tensile stresses. The criterion is formulated as

0"1 > SuTs / N t

cr 2 <_Suc s / N_
(15)

where the three principal stresses have the algebraic order 0-_> 0"2> 0"_,and Surs and Sucsare the

tensile and compressive strengths, respectively, and Nt and Nc are appropriate safety factors for

the conditions considered. The theory does not account for interactions between various principal

stresses and, as mentioned above, and ignores effects of shears. A final limitation is that the

theory does not account for the effects of scale (i.e. component size) exhibited by brittle materials

such as ceramics and glasses.
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2.5.1.2 The Modified Mohr Theory and the Tsai-Wu Theory

These theories, though more advanced than the Maximum Principal Stress Theory, have the

same limitation - they do not account for the effects of scale. The Mohr theory allows for different

strengths in tension and compression, and torsional failure is dominated by the tensile stress

component. However, it applies only to materials with isotropic tensile and compressive
strengths.

The Tsai-Wu (Tsai and Wu 1971) formulation mathematically represents the most general case of

an ellipse (i.e. translated and rotated off the origin)-

or with expansion

F,.o"i + F,jo'io" j - 1 (16)

FI°I + F2°"2 + Fl10_ + F2202 -}- F120"10 2 -]- F210"10 2 - 1 (17)

which is equivalent to an ellipse translated off the origin and rotated, i.e.

Ax2 + Bxy + Cy 2 + Dx + Ey + F - 0 . (18)

It is thus symmetric and convex for a discriminant less than zero (Ellis and Gulick 1978). Thus the

theory cannot describe materials with equibiaxial weakening. The theory might be adapted to

weakest-link materials by incorporating it into a scaling function, but the symmetry of the function

makes it unlikely that it would work for brittle anisotropic materials exhibiting cleavage planes.

2.5.1.3 Principle of Independent Action

Another stress-based criterion is the principle of independent action or PIA (Barnett et al. 1967).

Although this criterion was formulated for use with statistical functions, the stresses are treated as

deterministic and the equivalent stress inducing failure is given as

for

G e q _ (G ;z + G; z + G 3z _ / m

G1 >0"2 >G_ >0

(19)
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where the _._ are the principal stresses, m is the Weibull modulus (see section 2.6.1), and O'eqis

the equivalent stress that induces failure 100% of the time when it exceeds a specified value.

Principal stresses less than zero are generally ignored.

2.5.2 Fracture Mechanics Criteria

A variety of deterministic fracture mechanics failure criteria exist. These can be reformulated in

terms of an equivalent stress for failure by assuming an embedded or surface connected crack

and corresponding stress intensity factor coefficient. Thus, the strength exhibited by a brittle

component subjected to multiaxial stresses can be related to the fracture mechanics criterion. In

general the stress intensity factors for the loading modes shown in Figure 2.5.2.1 can be
formulated as

K., - Y,, r
- O

(2O)

where _, and v are the normal and shear stresses on the crack plane, Yzand Yzzare the mode !

and mode H stress intensity factor coefficients (SIFCs), and a is the crack dimension. For a

through-wall surface crack of length 2a in an infinite plate, the stress intensity factors are

K,,=0

(21)

For a semicircular crack Smith determined the mode ! solution for an infinite plate (Smith et al.

1967). For mode H Smith and Sorensen gave a value for an aspect ratio of a/c= of 0.4 with a

crack depth to section thickness ratio of a/t = 0.2 (Smith and Sorensen 1974). Note that for an a/t

ratio < 0.5, the YI_value increases only slightly, and the value for a/t = 0.2 should approximate that

for a thick plate, so

K,r - 1.366.q_ o",,

K_ - 1.241-,_ v

K,.=0

(22)
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Figure 2.5.2.1" Basic modes of loading and displacing a crack surface.
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SIFC's for surface cracks were also approximated from those of embedded cracks by Theimeier

et al. (Theimeier et al. 1991):

K, - 1.14 ---_2 _o',,= 1.286._a o",,

K_ =1.14
4 1

_-,_a z= 1.479._a r. (23) 2-v
Kill --" 0

The normal and shear stresses in terms of the principal stresses and polar and azimuthal anales
are

O" n -- O" 1 COS20 -+-0" 2 sin20

v - o'_ ) sin(20)]
(24)

for a surface connected crack as shown in Figure 2.5.2.2, and by

O'n -- (0"1 COS20 -[" 0" 2 sin20 )COS2_ -[- 0" 3 sin2_b

Z --[((O" 1 -- 0" 2 )COS_ sin0 cos0 )2 --[-((0.,, 1 cos20 -[-- 0"2 sin20 _ 0"3)cosq)sing))2 ]1/2

(25)

for an embedded (volume) crack.

In general, a failure criterion can be written in terms of the applied stress intensity factors as

FC(KI ,KI I ,KII I ) >_FC_ (26)

where Fc is the critical value of the materials resistance to unstable crack propagation. No stability

requirements are imposed. The equivalent mode I criterion is defined as

FC(Kzeq,O,O) - FC(K, ,Kiz ,Km )

where the equivalent stress and stress intensity factor are related by

(27)

Kleq -- YI _a (_'Ieq " (28)
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Figure 2.5.2.2" Normal and shear stresses resolved on a crack plane rotated at

an angle to the principal stresses" (a) surface crack and (b) embedded

crack.

NASA/TM---2002-210519 35



Some of the existing criterion and equivalent stresses are

2.5.2.1 Mode I Failure (MP)

FC(Ks ,K u ,Kui ) - K I

FC C - Kic

O'Ieq -- (_ n

This is equivalent to the maximum principal stress formulation (Equation 15).

(29)

2.5.2.2 The Maximum Hoop Stress Factor (MHSF) (Erdogan and Sih 1963)-

3
2K_ +6 K I + 8K H ii

FC=

+ 12Kii - K.zcr K_crT, + 8K D

FC_ - KI_

°"q- _,_-< +_:_1;,2_,,o,,#;_o,;+<_, _y9 9 9 /2

(3O)

2.5.2.3 The Coplanar Energy Release Rate (CERR) (Paris and Sih 1965)-

(31)

1975)"
2.5.2.4 The Maximum Noncoplanar Energy Release Rate (NERR) (Hellen and Blackburn
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1 _ 4
FC(KI,KII,KIII ) -_4KJ +6K/KiI + KII

IZ

K 2

FCc = ic
E' . (32)

Gie q G n +6 _cr,',T- +_T
Y; Y/

/4

Other, empirical, fracture mechanics criterion exist (Richard 1985; Shetty 1987) but these contain

factors that allow variation of the solution to account for microstructural (i.e. coarse grains) effects

prevent crack sliding and are thus less fundamental.

2.5.2.5 Criteria for Porous Media

The formulations of Eqs. 20 to 32 treat flaws as planar cracks. In actual materials the critical

flaws are often pores, agglomerates or inclusions instead of idealized cracks. In the case of

inclusions, tractions could be transmitted across the interface and in the case of pores and

agglomerates, the flaw has a complex three-dimensional shape. For porous medium, Babel and

Sines (Babel and Sines 1968) proposed the following biaxial fracture criterion

_* - (1+ 2h)cr_ -_2 (tension quadrant)

• (33)
O" = (h + 1)2 (0", -0" 2) (compression-tension quadrant)

. 4h _ + _2

where h is the ratio of the major to minor axes of the elliptical cavity and o: is a critical tensile

stress at the surface of a flaw. The value of j is considered a characteristic of the material.

Good agreement occurred between the model and data generated with hydrostone plaster, high-

silicon cast iron and a porous zirconia. The effect of test volume was not specifically addressed,

however, zirconia, like most ceramics, should exhibit a scale effect. If cr is equated to an

equivalent stress, the criteria becomes

(_'eq -- (1 Jr"2h)_y 1 -cr 2 for ¢r] > 0"2 > 0

(o,-o:) Io,-o,>0>o:
(_eq --- 4 h ff z +or2

(34)
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2.6 PROBABILISTIC DESIGN CRITERIA FOR BRITTLE MATERIALS

Although reliability theories that account for the variation of a variety of parameters (e.g.

dimension, properties, applied loads, etc.) on the system or component reliability exist (Haugen

1980), we are predominantly concerned with a materials strength variation and any effect of scale

on the measured strength. The most commonly used reliability theories that account for a brittle

materials strength variation and an effect of scale are based on that of Weibull (Weibull 1939).

Ideally, a useful reliability theory should require only simple laboratory data (e.g. flexural strength)

to infer the reliability of components subjected to nonuniform, multiaxial stresses.

2.6. 1 The Weibull Model

The most basic reliability theory applied to design brittle components is the direct application of

the Weibull statistical distribution (Weibull 1939). The cumulative probability of failure or risk of

rupture, P_::of a brittle component subjected to applied stresses, _, is

pFx _ l_ex p _ G-_,,, dx for ry > ry
_0 m

(35)

P_..,.-0 for _ <__,,

where m is the Weibull modulus, _o is the scale parameter, and _,, is the minimum strength. The

scale parameter is the strength corresponding to a unit volume or area stressed in tension. The

minimum strength can be determined via data analysis if justification exists, or set to zero

otherwise. The integration is carried out over the components surface area and/or volume,

depending on the location of the flaws resulting in failure, and the independent variable x is

replaced with area A or volume V. Flaw types include both intrinsic (Le. those inherent in the

material) and extrinsic (those generated on the surface of the material by external events such as

machining). Examples of intrinsic flaws are pores, inclusions, course grains, agglomerates, etc.

which are generated during processing and distributed throughout the volume and exposed at the

surfaces. Extrinsic flaws are machining damage, handling scratches, nicks, etc. which are

located on the surface only.

The shortcomings of the use of the Weibull distribution as a reliability theory have been discussed

at length (Batdoff and Crose 1974, Batdoff 1978, Evans 1978, Lamon 1988). The Weibull model
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is purely statistical and thus does not recognize the existence of flaws with specific characteristics

(e.g. sharp or dull), thereby requiring empirical measure of the distribution of each flaw population.

Further, it does not specifically address the effects of multiaxial stress, but implies the principal

tensile stresses to act independently, thereby ignoring shear and compressive effects, which may

be of importance.

The assumption of independence of the principal stresses leads to a probability of failure

formulation known as the principal of independent action (PIA) (Barnett, et al. 1967, Freudenthal

1968). For surface and volume analysis, respectively, the functions are

L ooJ dA (36)

+ + dV (37)

where _, _, and _ are the principal stresses. If, instead, the normal stresses in all directions are

assumed to reduce reliability and averaged, the normal tensile stress averaging model proposed

by Weibull (Weibull 1939) for multiaxial stresses is attained"

PF.,--1 exp -Sk._s(_,,)"'
X

(38)

where k,p, is a polyaxial crack density coefficient. The averaged normal stress is

.t'ff:','-
= Sff x (39)

where the variable x is replaced with the contour C for surface analysis and surface S for volume

analysis, and the integration is performed about a unit circle or a unit sphere, respectively. The

model is capable of predicting volume effects for a uniaxial stress state (Lamon 1988).
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2. 6.2 The Batdorf Model

Batdorf and Crose (Batdorf and Crose 1974) proposed a model that combined the probability of a

crack existing in a volume with the probability that the crack will cause fracture. The probability of

a crack existing for a material with a crack density N is, for a volume element,

Pe - N AV (40)

Because real materials have a distribution of cracks sizes and shapes, the number of cracks in a

volume A V that have critical stresses between o-c,.and ac,.+ dac,.is needed. Defining a distribution

function N(a_,.) which gives the density of cracks having a critical stress less than or equal to Gcr,
the number of cracks is

dN(o'c,. )
dN- AV da_,.

da_,. (41)

The probability that the crack is critical is given by the ratio of the solid angle, .-Q,containing the

normals to all the orientations for which the normal stress component is greater than the cracks

critical stress to the solid angle of a unit half-sphere:

Pc - ..Q (,,57,o"_,.)/4_ (42)

where 2; represents the applied stress state. Though the initial theory (Batdorf and Crose 1974)

was formulated for the normal stress component only, general stress states were later considered

(Batdorf and Heinisch 1978). The probability of failure of a component becomes

PF.,_--1--expl![ ! 41V do'_,. (43)

where _,m_-is the maximum effective stress that a randomly oriented flaw could experience from a

general stress state.

Batdorf and Heinisch (Batdorf and Heinisch 1977, Batdorf and Heinisch 1978) also introduced

effective stress criterion for the model based on the work of Oh (Oh 1970, Oh 1973) and Paul

(Paul and Mirandy 1976) for the stress distribution around Griffith cracks and flat, ellipsoidal
cavities. For A Griffith crack, the effective stress is
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where h is the ratio of the major to minor axis of the ellipse. For a Griffith notch the effective

stress is

The model shown in Eq. (43) reduced the gap between physically based fracture mechanics

models and statistically based weakest link theories such as Weibull's, and avoided the

assumption of independence of stress which "ignores the fact that, for some crack orientations,

two principal stresses can combine to fracture a crack that would not fracture by either stress

acting alone" (Batdorf and Crose 1974). The flaws were assumed to be noninteracting, randomly

oriented, uniformly distributed, closed, planar entities in an isotropic medium that was subjected to

macroscopic tensile stresses only. No stable or subcritical crack growth was assumed to occur

prior to failure. Crack size was not explicitly treated.

Predictions of the probability of failure of graphite (Poco AFX-5Q) tubes subjected to hoop and

axial stresses were made from tensile dog-bone data using volume integration only. The ratio of

effective volumes was 3:1 and the prediction was within 1% when the tubes were subjected to

axial loading and within 8% for hoop loading. The larger error for hoop loading was attributed to

the possibility of anisotropy

Giovan and Sines (Giovan and Sines 1979) tested alumina (WESGO AL-995) in uniaxial and

biaxial flexure with longitudinally ground and lapped surface conditions. Uniaxial strength data

were attained by placing wide beams (i.e. plates) in four-point flexure (Ae= 315 mm2). The biaxial

data was attained by R-O-R loading of circular plates (Ae = 641 mm2). The specimens were

designed to have the same surface area subjected to the maximum principal stress. The

machining was relatively aggressive (0.05 mm removal rate) as compared to what is now typically

specified (0.002 mm per pass for the final 0.06 mm, ASTM C 1161 1990), and probably resulted

in machining damage and the relatively large Weibull moduli (19 and 21 for the as-ground plates

and disks, respectively, and 17 and 18 for the lapped plates and disks respectively, as estimated

from data given in the paper). Also, the supports were not allowed to roll in either specimen

configuration, and thus errors due to friction probably existed. Their results indicate that the

Weibull and PIA models over and underestimate, respectively, the probability of failure of the
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concentric ring specimens with approximately twice the effective area as the four-point flexure

specimens from which the predictions (both lapped and as-ground) were made. However, the

Batdorf model with the following shear-sensitive effective-stress for a penny shaped crack was

satisfactory for both the lapped and as-ground conditions:

- + o.s )- (46)

where _:is the shear stress acting on the crack plane. Eq. (46) is based on the coplanar energy

release rate (Batdorf 1977). Note that the small effective area differences results in small

differences in the measured strengths of the beams and disks. Thus, the ability of the model to

scale over large areas was not rigorously tested. Surprisingly, the as-ground disks were not

reported to fail parallel to the grinding direction as would be expected considering the aggressive

grinding and the fact that the transversely ground plates exhibited lower strength than the

longitudinally ground plates (235 + 18 vs. 202 + 20 MPa) as would be expected. Unfortunately,

the specific failure origins were not identified. Both the uniaxial and biaxial specimens had the

same surface area, and the disks were about eight percent weaker than the uniaxial plates for

both finishes, implying a closed flaw population (i.e. equibiaxial weakening occurred).

Thiemeier and Bruckner-Foit (Thiemeier and Bruckner-Foit 1991) analyzed aluminum nitride (AIN)

four-point flexure (Ae = 99 mm 2) and R-O-R (Ae = 453 mm 2) data using an equivalent stress

approach based on the work of Batdorf et al. (Batdorf and Crose 1974, Batdorf and Heinisch

1978). Six different failure criterion were considered for through-wall and semicircular crack

types: The maximum principal stress, the coplanar energy release rate (Paris and Sih 1965), the

maximum hoop stress factor (Erdogan and Sih 1963), the minimum strain energy density (Sih

1974), the maximum noncoplanar energy release rate (Hellen and Blackburn 1975), and the

empirical criterion of Richard (Richard 1985). The maximum noncoplanar energy release rate

and the empirical criterion of Richard produced predictions within the confidence interval of the

disk data for both crack types. The maximum hoop stress criterion agreed only for the through-

wall crack configuration. The results illustrate well the importance of fracture criterion and

confidence bands in making predictions.

2.6.3 Criteria for Anisotropic Materials

Many brittle materials are anisotropic in some sense. A material can be anisotropic in three

aspects particularly relevant to the design of structures: elastic behavior, strength (by way of
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fracture toughness), and flaw distribution. Single crystals, textured polycrystalline materials and

composites are anisotropic in terms of elasticity and strength. The flaw populations may or may

not vary with orientation.

Of such anisotropic materials, graphite has been used frequently in studies of weakest-link

reliability models (Batdorf and Crose 1974, Buch 1976, Margetson 1976). Batdorf and Crose

(Batdorf and Crose 1974) treated graphite as isotropic (Poco AFX-5Q) although they concluded

that it might have been anisotropic.

Margetson (Margetson 1976) accounted for the anisotropic strength distribution of graphite by

modifying the PIA formulation of the Weibull model (Barnett 1967, Freudenthal 1968). The

principal stresses were normalized with the strength in the principal directions instead of with a

single characteristic strength as done for the isotropic case. Also, to account for compressive

strength being different from tensile strength, a step function was added which multiplied the

direction dependent tensile strength by the ratio of compressive strength to tensile strength. The

probability of failure for volume analysis was given as

P_ -l-exp - F _-'_H(o',)
(Y2 (Y3 dV (47)

+ +

where F(//m) is the gamma function of l/m and _(1) --(2) _-(_), f,, , O"f_. , and #. are the respective

average unit volume strengths in the direction of the principal stresses, crz,or2,and cry. The gamma

function allows the average unit volume strengths to be used instead of the characteristic values.

The step function to account for compressive stresses is

H(o-)= 1 , o> o

H(o-)=-,, o<o
(48)

where q is the ratio of the compressive and tensile strengths of the material. In terms of the scale

parameter, which is typically used in Weibull type functions, the probability of failure is
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In[O"1 0"2 ]m

PFV - 1- exp - 0":"7-[(0", ) + o':2'H (0-2) j [ ,In'1+ '0..o(34H (0"3 dV (49)

Although volume integration was specified in the model and used in the data analysis, an area

integral was probably more appropriate as all the testing was done in flexure. In order to

determine the materials strength envelope, three-point flexure tests were conducted on test

specimens cut from graphite blocks. The strength data was fit with an ellipsoidal function that had

a circular cross section in one plane (i.e. the strength was isotr0pic in that plane). To verify the

model, circular disks were cut parallel to the isotropic plane and tested in R-O-R biaxial flexure. A

ratio of compressive to tensile strength of q = 8 was assumed. The large q implies that the

compressive stresses do not greatly effect the reliability. The model was slightly conservative

(approximately 3%) in predicting the biaxial strength from the three-point flexure data. The slight

conservatism could have resulted from friction between the loading rings and specimen or contact

stresses, as no mention of lubrication is made. Note, however, that for a plate cut from the

isotropic plane and tested in flexure, the material and model simplify to the isotropic case and the

model was not verified for the anisotropic case.

One minor shortcoming of the model is that it assumes that the compressive strength distribution

differs from the tensile distribution by only a single multiplying factor. This is probably not the case

(Adams and Sines 1976) and the inclusion of compressive effects requires characterization of the

compressive strength distribution as a function of orientation. If the Weibull moduli are different,

the Weibull modulus could also be multiplied by a step function as follows

° ]m.[ ]p_ - ,- _xp- <,,fi; (o,) . + <_'H,(o_)
mH 2

[ In"t+ c_ (_) av (50)Go _H 1

where the step function to account for compressive stresses on Weibull modulus is

H2(o')=l , o-20

H2(°') = Z , o'<0

(51)
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where X is the ratio of the Weibull moduli in compressive and tensile loading of the material.

Another problem with the model is that it only considers the principal planes, which may not be the

weakest planes. Stress states might arise in which large normal stresses are resolved on the

cleavage planes while the reliability is only a function of the stresses and strengths in the principal

directions. Thus, the ratio of normal stress to strength may be a more relevant parameter in

calculation of reliability. A better modification of the PIA model might include both the principal

stresses and the stresses on the cleavage planes, both normalized to the appropriate strength

parameters. Note that both the {100}, {110} and {111} families of cleavage planes are not typically

orthogonal to each other. Generally, the occurrence of the maximum principal stresses on one

planar set precludes its occurrence on another. However, the {100} and {110} and the {110} and

{111} sets contain members that are orthogonal to each other and the existence of the maximum

principal stress on a given cleavage plane does not preclude the resolution of the second principal

on another set. Further, when the principal stresses are equal, they will be resolved onto all

crystal planes a point in the body.

Duffy and Arnold (Duffy and Arnold 1990) followed the approach of Weibull (Weibull 1939) and

Barnett and Freudenthal (Barnett, et al. 1967, Freudenthal 1968) to develop a reliability model for

transversely isotropic whisker reinforced ceramic components. As with most weakest link type

models, no interaction is assumed, and the material is a continuum that is sufficiently discretized

to make stress, strain and temperature constant while still having sufficient volume to be a

statistically homogenous medium. Unlike the previous models, however, they took advantage of

the scalar nature of reliability functions and the contaminant tensor invariance under orthogonal

transformations. The materials symmetry was accounted for via unit vectors incorporated into the

reliability function. Thus, invarients related to the stress components causing fracture were

developed and incorporated into a PIA like model, resulting in

VJ LOgo,J J L°o J J (52)

for a unit volume where the I*; 's are the invarients, the mi's are the Weibull moduli and the _oi's

are the scale parameters. The component reliability would be given by integration of the function

over the total area or volume, as for all Weibull type formulations. No verification of the model

was performed.
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Based on the literature reviewed, no fracture mechanics based reliability model exists for

application to brittle materials exhibiting strength and elastic anisotropy. The isotropic reliability

models based on the Weibull distribution offer a good starting point for the development and

verification of a more general reliability model that is applicable to brittle materials exhibiting

elastic and strength anisotropy.
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CHAPTER 3" THEORY: ANISOTROPIC RELIABILITY MODEL

In this chapter, a reliability model for anisotropic materials will be derived from two approaches"

the first from an intuitive analysis of how the strength distribution in an anisotropic body effects the

reliability of the body, and the second from a probabilistic analysis of the effects of a crack

distribution of random orientation and size on the reliability of an anisotropic body.

3.1 MODELS BASED ON THE PRINCIPLE OF INDEPENDENT ACTION

Per the discussion in Chapter 2, the PIA model as modified for anisotropy (Margetson 1976) does

not consider that the principal stresses may not align with the cleavage planes. Thus the PIA

model needs to be modified to consider the effects of normal tensile stresses on a multiplicity of

planes, or at least the most significant planes, leading to

(53)

where G,,<hk_>is the normal stress in the <hkl> direction, _o<hkt>is the scale parameter or unit

strength in the <hkl> crystal direction. The summation is taken over the most significant planes

(i.e. the weak cleavage planes and those subjected to all the principals). Two extreme cases of

Equation (53) can be considered" that in which a single term in the summation dominates

reliability and that in which all normal tensile stresses reduce reliability. The first case occurs if the

stress distribution consists of a large tensile stress oriented on or near a weak cleavage plane; the

term in the summation is the maximum ratio of normal stress to scale parameter. The second

case is the limit in which the summation term becomes an integral over all crystal directions. This

would appear conservative (i.e. over estimate the probability of failure) based on isotropic data,

even though the normal stress component in any direction should reduce the reliability associated

with three-dimensional flaws. Such an effect was proposed by Weibull for isotropic materials

(Weibull 1939) via the normal stress averaging technique which was given previously in Equations

(38) and (39).
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Use of Equations (38) and (39) requires the crack density coefficient for a multiaxial stress state,

k_p,, on the stressed, free surfaces of the crystal. For two dimensional isotropic cases, the

approach of Gross and Gyekenyesi (Gross and Gyekenyesi 1989) might be used to estimate a

k,p, value for an anisotropic material by averaging the uniaxial crack density coefficient, kw,. over

the <hkl> directions of a contour in the (mno) plane of interest

J k .,tiC
-- C(mno)

kWS

f dC " (54)

C(mno)

The limits of integration depend on the symmetry of the (mno) plane. For multiple planes (i.e., a

three dimensional body), a series of terms is required in Equation (53), or it can be solved on an

element-by-element basis. This leads to a solution of the form

m._ I-' (re)k-

where k,,psis an effective crack density coefficient for anisotropic surface subjected to multiaxial

stresses. The obvious problem with this solution is that stresses and crack density coefficients

are averaged instead of being matched on a plane-to-plane basis. Further, a function describing
strength in all directions in the plane is required.

For a plate in biaxial flexure, a single free (mno) surface is stressed in tension and the contour

integral is taken over the <hkl> directions. If the (100) plane is considered, the strength repeats

every quadrant and the strength in a <hkl> direction might be described by

°'o_,oo ><hk,>(O) -- O'o<,oo>COS2(20)+ So<,,0> COS2 20 + --
2 (56)

where O is the angle from the <100>, ao<_oo>and an<_0>are the unit strengths, respectively in the

<100> and <110> directions. In order to determine if the effects of multiaxial stresses on the

NASA/TM----2002- 210519 48



reliability can be predicted, more complex testing such as torsion or biaxial flexure is required. For a

three-dimensional surface, a more general equation is required.

A more general approach for anisotropy might be to integrate the ratio of strength to stress about the
unit circle

- sb-,:,A (57)

with

/ )n,ff O',,<hkl> dC
--N_m_ cr o<hkl>

Idc
C

where N,_' would represent an average ratio of normal stress to strength for a surface, which must

be calculated element by element, and is less than unity (Batdorf 1978). Although this approach

only considers effects of normal stresses, an effective stress could replace the specified normal

stress. Replacing the normal stress with a mode I equivalent stress derived from any appropriate

fracture mechanics failure criterion leads to

PfA -1-exp -f]-]-_ GS<q<t'kl-_>dCdA
O'o<hkl>

(58)

where and O'ieq<hkl> is the mode I equivalent stress parallel to the <hkl> direction and normal to the

(hkl) plane at a location. The same function is derived in a more rigorous fashion in the next

section.
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A GENERALIZED WEIBULL RELIABILITY MODEL FOR

MATERIALS WITH STRENGTH AND ELASTIC ANISOTROPY

BRITTLE

A general reliability model for homogenous brittle materials with strength anisotropy can be

derived by modifying the approach of Thiemeier et al. (Thiemeier 1991) to consider fracture

toughness, and thus strength, as a variable of orientation in the probability density function. The

probability of failure of a brittle material containing randomly distributed surface flaws is related to

the probability that a crack of a given orientation exists at a given location and the probability that

the flaw exceeds the critical dimension for failure. If the cracks are assumed to be randomly

distributed in orientation and location via a uniform distribution, the probability of a crack existing
at a location with a particular orientation is

1 dA--1 dO (59)
P A,O A r 7v

where Ar is the total surface area of the body and _ is the total range of possible crack angles.

The probability that a given flaw causes failure is the probability that the randomly distributed

crack size (i.e. no variation in the crack size distribution and Weibull modulus with orientation) is

greater than the critical crack length a_on that plane"

oo

p,,,- p(,,> )=f So(a)d,
ac

(60)

where f, is the probability density function describing the crack size distribution and a is the

randomly distributed crack size. The critical crack size on any plane of an anisotropic material is

related to the fracture toughness by

(e )
a_ y20"2 (0 x) (61)

I leq

where KI_ (0)is the fracture toughness of the plane at angle e, Yzis the crack geometry factor, and

_Ieq (0, x) is a mode I equivalent stress at orientation 0 and location x as defined by any of

applicable failure criterion for elastically anisotropic materials. Note that some of the failure
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criteria in section 2.5.2 are applicable to anisotropic materials as they are independent of the

elastic constants. Only the stresses and the stress intensity factor coefficients are necessary.

For a material with fracture toughness anisotropy, both the fracture toughness and equivalent

stress are functions of the crack plane orientation. Thus a_ depends on the location of the crack

by way of the equivalent stress and on the orientation of the crack by way of the fracture

toughness and equivalent stress. The probability of a single crack causing failure in a component
is thus

i ooe,- m-/7
o ,,.(o,7)

(62)

To solve Equation (62), a functional form for the crack size distribution needs to be assumed. If a

power function of the form

f (a) - Ca-g (63)

is used, Equation (62) becomes

?-o 1-,- dO dA (64)

for g > 1. The reliability of a component containing the above flaw is R_ = (1-P_), and the reliability

of the component for n flaws is

R,, - (l- P1)" (65)

The probability of n cracks actually occurring in a components area for an average crack

occurrence is given by the binomial distribution if the sampled areas are independent and have

equal probability of a crack existing. The binomial distribution can be approximated by the

Poisson distribution (Miller and Freund 1977) for a large sample area and a small probability of

crack occurrence in a unit area, which should be the case for dense, well made components with

small flaws. The probability of n cracks becomes:
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P" = n/ (66)

where ,_ is the product of the number of sampled areas and the probability of a crack existing in a

sampled area, or the expected (Le. average) number of cracks. The probability of the component

surviving is the sum of the product of the reliability at any crack frequency and the probability of

that frequency occurring:

oo

Ps - Z p,,R,, (67)
n=l

Substituting Equations (64), (65) and (66) into (67) and using the equality

oox'_j
Z n! - exp(x) (68)
/I-- /

leads to

P_ - exp(-,_, P1) (69)

and

1 doda
PFA -- 1--exp -_ao 1-- r

(70)

The expected number of cracks and the area are not known initially. However, the total number

of crack in the total area is equivalent to the average number of cracks per unit area"

_o _

Ao Ar
(71)

Also, because crack length is inconvenient to measure and strength "captures" the combination of

fracture toughness and crack length, Equation (60) can be substituted into (59). If the fracture
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toughness is written in terms of a reference strength and crack length (i.e. K_c(8)=Cro(8)Y_/_ So),

then by substitution of (70) and (60) into Equation (69)

m
"7[_o !1 f_.Ca_ z/2 (O'Ie q (O,X) dO dA (72)

where m=2$-2. Further reduction is attained by redefining the initial crack density as

ma o

f (a) - 2_oam/2+ 1

ma o z/2
(73)

yielding the reliability function for anisotropic materials

(74)

This has the basic form of the Weibull function and is similar to the isotropic model given by

Thiemeier and those frequently use for polycrystalline ceramics, except that the reference

strength is a function of planar angle and any failure criterion defining coplanar crack extension

can be used. A function describing the strength as a function of angle on the surface(s)

considered is needed along with the stress state in the anisotropic body. Because of the symmetry

of a cubic material, the fracture toughness, strength and elastic properties repeat every quadrant

and the second integral can be multiplied by a factor of two, and the integration taken from 0 to

/2. For a three-dimensional component, the finite element method (FEM) can be applied to

determine the stress state and perform the integrations. The element size must be sufficiently

small so that the stress state is nominally constant, and any curved surfaces can be descritized to

planes effectively. The model assumes coplanar extension can effectively occur on any plane.

The above analysis can be extended to volume flaws by modifying Equation (58) to
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- l dv l d01
P1 _ _" ¢ dO (75)

leading to

/:'1 1 oo- fa(a)dadOdO_gT. (76)

where VTis the component volume and the other variable are as defined previously.

The reliability formulation in Eq. (74) is very convenient as it allows the use of any fracture

mechanics failure criterion that is applicable to elastic isotropy or anisotropy as necessary, a

variety of crack shapes and a scale parameter defining the strength as a function of orientation.

In order to apply the reliability function, a mode I equivalent stress failure criterion applicable to

elastic anisotropy is required.

3.3 A FAILURE CRITERION FOR ELASTICALLY ANISOTROPIC MATERIALS

All of the mode ! equivalent stress formulations given in section 2.5.2 are applicable to isotropic

and anisotropic materials except that for the coplanar energy release rate. A mode ! equivalent

stress failure criterion for the coplanar energy release rate can be derive for an elastically

anisotropic material by accounting for elastic anisotropy. The mode ! equivalent energy release

rate can be defined as (Paris and Sih 1965)

GI_q = GI + GII (77)

with

GI = K/2/r$22 I1TI{ '_1//1/./2+//2} and
G.

= '_ 8111nl_l -I-..].z2}
(78)
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where the S_;'s are the single crystal elastic constants (compliances), KI and KII are the mode I

and//stress intensity factors defined as KI = G v/_a and KI1 -" _¢/TF.a where a is the crack size, O'n is

the normal stress and r is the shear stress on the specified plane. The quantities y_ and/12 are

the roots of the complex equation (Lekhnitskii 1963)

_'14 -- 2S16_3 (2S12 '} 22 •S11 _{_ $6 6 ),j/2 _ 2S26_/./+ S - 0 (79)

The equivalent stress can be derived by defining the mode ! equivalent stress intensity as

Kleq-" (ZYleq_//7"Ca " (80)

Substituting Eqs. (78) and (80)into (77)leads to

G ie q -- G7 z

2 Sll Im(/.z, +/-/2)

-q: • (81)
822 I1TI[(]I 1 Jr" _-/,2)/(_l_LZ2) ]

Eqs. (56), (74) and (81) define energy based, probabilistic fracture mechanics functions for the

reliability analysis of an elastically anisotropic, brittle surface such as a plate. For a volume

analysis, more general equations are required. In order to conveniently make strength predictions

with Eq. (74), it is necessary to reformulate it in terms of strength instead of probability.

3.4 RELIABILITY PREDICTION FORMULATIONS

Isotropic Materials

For the case of strength isotropic, Equation (74) reduces to

PEA-]-exp ,--__o !l !lO"eq (O'x)lnZdOdmI .Go

(82)

For the specific case of measured test specimen or component data, the probability formulation is
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[, ao l (83)

where (:TMA X is the maximum stress sustained by the specimen or the strength. The scale

parameter, ao, in Equation (35) and (82) can be determined by equating the general form of the

Weibull equation (Le. Equation (82)) to that for the specific case of test specimen data (Le. 83)
and solving for the scale parameter:

0( °o
(84)

or, as the scale parameter is a constant

)ml'JmG o -- GO Z -_ (_ Ieq dOda
ok MAX

(85)

or

a o - ao A[/m (86)

where ,% is the "effective area" of the specimen and ae is the characteristic strength of the test

specimen, or the stress for which for 62% of the specimen would fail. Generally the PIA model is

employed and aZeqin Equation (85) replaced with the principal stress or stresses as appropriate.

Although Equation (82) can be used to predict the failure distribution of a biaxial test specimen or

a component from uniaxial test data, for verification purposes it is more convenient to use

characteristic strength values associated with the biaxial flexure test specimen, because the

strength was experimentally measured. Rearrangement of Equation (85) provides the function
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1 1 m

aO -- a° f7 aleq dOdA

1/m

(87)

If Equation (87) is equated to itself for two different failure strengths and effective areas, a

convenient scaling equation for a given probability of failure can be derived"

(701/0"02 - (Ae2 /Ael )1/m (88)

where ce is the characteristic strength corresponding to effective area Ae;. The effective area for all

the surfaces subjected to tension in three- or four-point flexure specimens is (Nemeth et al. 1990)

Ae _ 1 -11-(m -_- lm(S i /)2 S ) ] dr- B + W + w]_° (89)

where m is the Weibull modulus for the surface flaw population, Soand S; are the outer (support)

and inner (loading) spans respectively, and B and W are the depth and height of the beam

respectively.

Equations (88) and (89) are generally considered capable of predicting four-point strengths from

three-point strength data for brittle, isotropic materials such as polycrystalline ceramics and glasses.

They are noted here because they constitute a convenient approach for verification exercises.

Note that the use of the maximum stress in Eqs. (83) and (84) is an arbitrary, but convenient and

common choice as most engineering comparisons consider the maximum stress to represent

strength, etc. However, Fessler and Fricker (Fessler and Fricker 1984) use a nominal stress to

compare plate specimens with and without friction and generated a nondimensional value of

effective area by normalizing to the total specimen surface area or volume.

For the POR biaxial flexure test configuration and the PIA failure criterion, the effective area of the

disk test specimen can be calculated from
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12[ 2 ,]Ae'- 4re +v 's 2Rs(I+v)+R, O-v

i- n_ d (3 + v)(1 + 3v)
(9O)

within 1.5% for m > 5, v > 0.17 and within 1% if Rs/Rd< 0.9 also. For the disks tested herein, Ae =

227 mm 2. For the three-point flexure specimens tested herein, Ae = 2.06 mm 2, implying an

effective area change of ~110:1. The nominal tensile surface areas of the WC POR test

specimens and the size "A" 3-point flexure specimens were 40 mm 2 and 2027 mm e, respectively.

3.4.2 Anisotropic Materials

For the anisotropic case, equating Equation (82) and (83) leads to

_._o!,!l 1 (_.leq(_.._,)lm 1/moo- -; Oo(e)_E ie3 dodA (91)

with the scale parameter unfactorable from the integrand because of its functionality. However, if the

PIA approach is applied, the equivalent stress and scale parameter are nonzero in the principal
direction only, and

oo-Oo(O,1 1 o,(o,,-;)dodz
O'MAx

(92)

or

oo-Oo(O, !/ O_,A_

/ /7l

(93)

or

O'o (O, )- O'oAle/m (94)
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where 0_ is the orientation of the principal stress and the measured characteristic strength. The

corresponding scale parameter is independent of the scale parameter in other directions. This is

analogous to the isotropic case and scaling of uniaxial data for a specific orientation can be done as

usual

(oo,/oo )<,,,.,>- (Ae Y'"'
,"<hkl > (95)

where _o; is the characteristic strength corresponding to effective area Aei in the <hkl> direction of

interest. For more general failure criterion, the scale parameter can be estimated from uniaxial

characteristic strength data by noting that the equivalent stress is a function of the first principal

stress and trigonometric functions. Thus, the area and unit circle integrations can be separated by

grouping the terms as functions of angle or the Cartesian area coordinates

(96)

or

1/m

(97)

where riO) is the failure criterion written in terms of unit, uniaxial principal stress. Note that for the

uniaxial case, the integrand in (97) is identical for any specimen size and once again equation (89) is

applicable. Further, as Equation (97) can be divided by itself for two different uniaxial volumes and

simplified to yield Equation (88), implying that characteristic strength is independent of failure

criterion for uniaxial cases and computation of the scale parameter unnecessary. However, the

scale parameter is still required for prediction of multiaxial stress cases and Equation (95) needs to

be solved for Crofor the desired failure criterion.

The functional form of the scale parameter is unknown in Eq. (96). However, because it nominally

represents a scaled value of the characteristic strengths, it can be assumed to take the same form.

For the (100) plane the scale parameter in any <hkl> direction can be represented as
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Oo_oo_<hk,>(0)- oo>c°__-(2O)+0o<_o>_'_:(20). (98)

where 0 is the angle from the <100>. Note that the effective stress functions in Equations (29) -

(32) are integrated about the unit circle from the first principal stress whereas the strength function

has an absolute reference to the crystal orientation. Thus, a phase angle accounting for the

difference between the starting angle for the scale parameter function and the orientation of the

principal stress is needed. The general function in terms of the angle 0 from the principal stress
becomes

_oc ,oo_<hk,>= CYo<,O0>c°s2 (20 + 2c#)+ C_o<, ,o>sin2 (20 + 2c#) (99)

where the angle @ is 0 and 0 = 0 for a principal stress oriented in the <100> direction. For a

principal stress orientated in the <110> direction q_= _/4 and 0 = O. For experimentally measured

characteristic strength data, Equation (97) can be written as

0"o<1oo>= 2 A-.-c_ f (O) d8
,_ Oo(O) (100)

and

/ ) /o'o<,,o> = 2 Ae rc f(O) m

Oo(O+=/4) do

1/m

(101)

and the two equations used to solve for the unknown values _o<_oo>and _o<_¢o>based on any failure

criterion. For the normal stress criterion with a unit stress,

f (19)= cos 20. (102)

For the maximum coplanar energy release rate with a unit stress
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[ )11Y]
f (O ) - cos 4 0 + -_ sin 20

4 Yf

/2

(103)

For maximum noncoplanar energy release rate with a unit stress

/ )13}112i 40 2 1 Y_ 4f (O) - cos 80 + -_cos sin 20 + --_ sin 20
2}112 16}712

/4

(i04)

In Eqs. (102) - (104) O is the angle from the first principal stress and Yzand Yuare the mode I and

Mode//SCIFs as defined in section 2.5.2.

Eq. (91) defines a function for the prediction of the characteristic strength of a component exhibiting

strength and elastic anisotropy. The required inputs are the scale parameter constant in Eq. (99) as

determined by simultaneous solution of Eqs. (100) and (101), and an equivalent stress as defined in
section 2.5.2 or 3.3.
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CHAPTER 4: EXPERIMENTAL PROCEDURES- MATERIAL PROPERTIES

AND VERIFICATION TESTING

In order to assess the ability of Equation (74) to predict the strength of isotropic or anisotropic

materials subjected to multiaxial stresses, the uniaxial and biaxial strengths of an isotropic and an

anisotropic material were measured.

4.1 TEST SPECIMEN PREPARATION

4.1.1 Isotropic Material

The isotropic material used was a commercial grade WC with a 6% nickel binder (KZ801,

Kennametal Corp., Latrobe, PA). Billets measuring 25 mm in thickness were ground and lapped

on one face in order to provide a surface with minimal machining damage and isotropic strength

behavior. Lapping was used because test specimens that are manufactured with typical uniaxial

grinding procedures (e.g. ASTM C 1161 1990) and subsequently subjected to multiaxial stresses

tend to fail from grinding damage rather than from inherent processing flaws.

4. 1.2 Anisotropic Material

Single crystal billets of a NiAI alloy manufactured commercially 2 were mounted on goiniometers

and oriented by X-ray diffraction. Flexural specimens (ASTM C 1161), measuring 3 by 4 by 45

mm in height, depth and length, respectively, were then cut from the billets along the <100> or

<110> axes by electro-discharge machining (EDM). The secondary orientation was not controlled

relative to the beam surfaces. The resulting surfaces were sanded with 400 grit silicon carbide

paper and chemically milled in a solution of phosphoric and nitric acid to remove the remaining

EDM damage. The chemical milling procedure follows (Walston 1995)-

1. Mix a solution of 85% phosphoric acid and 15% nitric acid.

2. Heat to 125°F while stirring constantly.

2
AFN 12 - General Electric Aircraft Engines, Evendale, Ohio.
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3. Submerse the specimens in the solution, making sure that the surfaces of interest are exposed

to the stirred solution. Leave the specimens in the solution for 15 minutes.

4. Rinse the specimens in water.

The specimen were then inspected at ~30x magnification with an optical microscope, and if

necessary the sanding and etching processes were repeated until no EDM damage was visible on

the tensile or side surfaces of the specimen. An example of EDM damage on the surface of a

specimen is shown in Figure 4.1.2.1.

Disk specimens for biaxial flexure were cut from a billet and prepared in a similar manner

4.2 MEASUREMENT OF ELASTIC PROPERTIES

The elastic modulus and Poisson's ratio of the WC was measured by applying the impulse

excitation technique (ASTM C 1259 1994) to the ten 50.8 mm diameter, 2.2 mm thick disk test

specimens.

In order to determine if the elastic properties reported by Wasilewski or Rusovic' and Warlimont

(Wasilewski 1966, Rusovic' and Warlimont 1977) for binary NiAI were sufficient for calculations on

this alloy, the elastic modulus was determined along the <100> and <110> crystal directions. The

impulse excitation technique (ASTM 1259 1994) was used on 46 <100> and 65 <110> flexural

beam specimens.

4.3 UNIAXlAL STRENGTH TESTING

The uniaxial strength of the WC was measured in three-point flexure by using twenty-nine size "A"

test specimens measuring 1.5 by 2 by 25 mm in height, depth and length (ASTM C1161 1990).

Flexure testing was used because it is relatively simple, requires little test material and has been

standardized for brittle materials (i.e. ceramics) (ASTM C 1161 1990). The tensile surface of the

test specimens corresponded to the lapped surface of the billet.

NASA/TM_2002-210519 63



(a) Overall view
1O0/_m

(b) Detail lO/_m

Figure 4.1.2.1" EDM damage along the surface of a flexural test specimen" (a)

overall view and (b) detail. EDM damage was not removed prior to chemical

milling.
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The flexural strengths of the NiAI <100> and <110> beams were measured in both three and four-

point flexure. Measurement were made in both three and four-point loading because the different

volumes subjected to stress provide a means to verify the model for the simple case of uniaxial

stresses. Size "B" specimens (3 by 4 by 40 mm in height, depth and support span for three-point

loading; a 20 mm loading span was used for four-point loading) were used. The strength was
calculated from

_"uvs 2 B W 2

where F is the failure force, So and S; are the outer (support) and inner (loading) spans

respectively, and B and W are the depth and height of the beam respectively.

4.4 BIAXIAL TEST RIG DESIGN AND ANALYSIS

A biaxial test rig employing the P-O-R configuration was designed based on descriptions given in

the literature (Rickerby 1977, Shetty 1983). Based on the discussion in Section 2.4.3, it was

thought that a neoprene membrane or no membrane would provide the best results, particularly

for NiAI because it is relatively strong, has a relatively low elastic modulus as compared to

ceramics or steel, and will exhibit larger deflection at failure for a given test specimen

configuration.

The membranes used previously to contain the pressurization medium on face of the test

specimen were replaced by a nitrile O-ring retained in a groove. A cross section of the test rig,

which accommodates 25.4 mm diameter disks is shown in Figure 4.4.1. The rig consists of a test

chamber, support ring and cap, extensometer and oil inlet and drain ports. The desired

pressurization cycle is supplied to the test chamber and specimen via a servo-hydraulic actuator

connected to a closed loop controller. The feedback to the controller is supplied by a commercial

pressure transducer connected to the oil inlet line.

The test chamber and cap are 304 stainless steel, and the support ring is cold rolled, half-

hard copper or steel depending on the pressure required. Copper, being somewhat ductile,

accommodated any minor misalignments or specimen curvatures. Detailed drawings of the

rig are given in Appendix A.

Ideally, the test rig applies a uniform pressure on the supported surface of the disk test

specimen, and allows it to deflect without rotational or sliding restraint at the support ring. The

resulting biaxial stress state provides a means to estimate the biaxial strength of a material,

provided that the stress state generate within the specimen can be calculated.
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Figure 4.4.1" Schematic of the biaxial test fixture.
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4.4.1 Stress State in a Pressurized Plate: Okubu's Approximate Solution

The displacement solution for a simply supported, circular, special orthotropic plate of unit radius

and thickness subjected to uniform pressure was solved by Okubu (Okubu 1949) in the form of a

series. An empirical solution for a plate of unit radius, similar in form to the isotropic solution

(Szilard 1974), was also proposed:

where

q (1 1,2 2
w= 64-D* - Xk*-r ) (106)

D*-1(3D, +2D,2 +4D88 + 3Dz2 )
8 1 (107)

and

k* -- 7D_ + 10D_2 + 12D66 + 7D22

2(D,, + 2D,2 + D22 )

_ t 3 S
tJ S 22 D22 -- 11

D_ = 12 S_1S12 - $2_2 ' 12 S_S_2 - S_

t3 --$12 t 3 1

D_z = 12 S_S_ - S 2 ' De8 -_---12 12 $88

(_08)

(109)

where q is the applied pressure, t is plate thickness, r is the position of interest and the E;/s are

the material compliances. The plate rigidities, D_j's, and associated functions are written in the

more standard notation used by Hearmon (Hearmon 1961) instead of that used by Okubu (Okubu

1949). Note that Equation (106) was published by Hearmon (Hearmon 1961) for the general case

of a non-unit radius:

64D*

where % is the radius of an anisotropic plate. However, an rp2 term is missing. For the general

case of a plate of variable support radius the displacement should be

q (1.2 r 2 2r2

For the simpler case of cubic symmetry, the constants reduce to
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D* cubic 1(3D1 + Dlz + 2D66 )
4 1 (112)

k* _.b_ _- 7D 11+ 5D 12 "+" 6D 66

2(D,, + 2D,2 )
(113)

Note that the effect of overhang is ignored in the displacement solution and the specimen radius

is set equal to the support radius. Because the symmetry of an orthotropic or cubic crystal is

orthogonal, the elastic constants are in Cartesian form and the stresses and strain need to be

determined in Cartesian coordinates. The strains and stresses are determined from the curvature

equation in Cartesian form and the usual strain-displacement relations for pure bending"

O_2 _w 9-w 9 _-w
__ • _ o

$-'1_- o_x2 , 8_ -z-----
. __ oqy2 , e66 =--2 Z aX ay (114)

Oew -q [24(k* +1)_12x e 4y 2]
Off 64D*

o_y 2
-q [2,f(k* +1)-12y 2

64D*
-4x 2] (115)

where z is the distance from the mid-surface of the plate. The stresses are determined from the

strains by (Hearmon 1961)"
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82 w 32w I_11 - -z b_ 3 x2 + b_23y 2

G12----Z 2b88_x3y

(116)

where bH - S__e/ S.S__o_- SI__, b__ - S. / S_S____- S__,be6- 1/$e6 and b__ - -S__ / S.S:_ S _: . As the

plate is cylindrical, a description of the stresses in polar coordinates is more intuitive. The

Cartesian values at any point in the plate can be converted as follows:

cr.,. - cr_ cos 2 q) + cr____sin 2 q_+ cr__ sin 2q_
p 9

c_oo - G____cos- q) + G H sin- q) - G_ sin 2q)

_,.o - (__2 - c_ )sin _0cos _o+ _1,_ cos 2_o

(117)

where q_is the counter clockwise angle from the x axis. The resultant stresses as a function of

angular orientation in a (001) NiAI plate are shown in Figure 4.4.1.1. The stresses are a function

of both radial position and orientation, with the tangential stresses being greater than the radial

stresses at all locations except the plate center where they are equal. For any radius, the peak

tangential stress in the plane of the plate occurs at the <110> directions, whereas the peak radial

stress occurs along <100> directions.

4.4.2. Okubu's Exact Solution

Because Eq. (110) is approximate, its accuracy is an issue for reliability calculations.

deflection at any point in an anisotropic plate is defined as (Hearmon 1961 ,Timoshenko 1959)

The

a4z a4z a4z

Dll _x 4 + 2(D12 + 2Dse ) _x2y2 + D22 -- = qaya
(118)

Okubu defined the exact displacement solution for a plate with unit radius as

w= w o + R[fl(x +ikly)+ f2(x +ik2Y)+C1 x4 + C2x2y 2 +C3Y 4 +C4x 4 +C5y2 +C6] (119)
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A ...... Tangential Stress, r/R = 0.2
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0.8 -.._"'--";!-::L._ ".::.:::-.

__"i_:.:_:'__......................._..::i"_!__:::_::::_..........._.-_..-_.._.
0.6

0.4

o._i,_//"i..i.i;_,:._--{....... )_.:............1....:_:,,:;......................_i\
o.o_ii_i:_i__;,_iii_:)_::_::_)i'....i_..._.__....................,o,o_
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Stress/Pressure

Figure 4.4.1.1" Stresses in a {100} plate of unit radius and thickness subjected to

a unit uniform pressure as calculated with Okubu's (Okubu 1949) approximate

solution.
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with

and

oo

f_'(x + ik,y )= _._ A,, cosh 2n(_x" + ifl')
2

f_ (x + ik2y )-__, B,, cosh 2n(o_" + i_")
2

(120)

(121)

This lead to

032W

c9x 2 = Z (A,,cosh 2na" + B,, cosh 2na")cos 2n/3 + 6C 1+ C2 + 2C 4 -1- (6C1 - C2 )cos 2_
2

692w
oo

2 = -Z (A',k2 cosh 2ha' + B.,k [ cosh 2na")cos 2n/_ + 6C 3 + C2 + 2C 5
Oy 2 - (6C3- C2)cos2/3 (122)

oo

= -Z (A.,k, sinh 2ha" + B., sinh 2na")sin 2n/_ + 2C 2 sin 2/_
2

on the boundaries of a plate with a unit radius. The A,'s, B,'s and C_'s can be determined by

applying the boundary conditions that the displacement and moments disappear at the edge of

the on the boundaries of a plate. The necessary functions are given by Okubu (Okubu 1949).

The terms c' and a' are dependent on the elastic constants only and can be derived from the

Cartesian to curvilinear transformation equations provided by Okubu"

x + iy = e_+i_

x + ik 1y = c'cosh(a' + ifl')

x + ik 2 y = c"cosh(a" + ifl')

(123)

with ' a' , c' ' . " ' a'c cosh =1 sinha -k 1,c cosha =1. c sinh =k 2 (124)
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for a plate of unit radius. The resultant stresses as a function of angular orientation in a (001) NiAI

plate are shown in Figure 4.4.2.1. The stresses are a function of both the radial position and the

orientation, with the tangential stresses being greater than the radial stresses at all locations

except the plate center where they are equal. For any radial position, the peak tangential stress in

the plane of the plate occur at the <110> directions, whereas the peak radial stress occurs along
< 100> directions.

The stress resulting in a NiAI plate as calculated from the series and approximate solutions are

compared to the isotropic solution in Figure 4.4.2.2 for a (001) plate of unit radius and thickness

subjected to a unit pressure. The approximate and isotropic solutions predict higher stresses

(~10%) near the plate center, with the isotropic solution decaying more rapidly than either of the

anisotropic solutions. Thus, for an anisotropic plate, greater care in preparation of the test

specimen edges is needed.

As Okubu's solutions were derived for a plate of unit radius, thickness and applied pressure,

generalization for application to real specimens is needed.

4.4.3 Generalization of Okubu's Solution to Variable Radius

For a disk of any radius, the equations defining the boundaries and displacement are function of

the radius. The terms relating c' and a' in Eq. (124) become

c'cosh a lp, c'sinh a -lp kl, c cosh a - r , c"sinh rp k2 . (125)

This leads to

I cosh(2n + 2)_" . [
cos(2 n + 2 )fl" - 1c, (2-y-+7+2 L--U) +

w=7 A,, co,h(2,,- 2 .
2n(2n - 1) cosh 2na'cos 2nil

-!-
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Figure 4.4.2.2: Comparison of the stresses in a {100} plate of unit radius and

thickness subjected to a unit uniform pressure as calculated with

isotropic and anisotropic solutions: <100> direction and (b) <110>

direction.
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I cosh(2_+2)_" . . , [ost,2n + 2 )_ - 1

-TX I+.c°sh(2n,,-2_,cos(2n-2)_"
- [ (2n-l)_2n-2)

+C1 X4 -FC2x2y 2 +C3Y 4 -t-C4 x2 +Csy 2 dr-C 6

,]2n(2n - 1) cosh 2na"cos 2rig

(126)

as in the original solution. The condition that w vanishes at the plate boundary rp gives

(3C1 +C2 + 3C3)14 +4(C4 + C5),)_ +8C 6 =0

(C1-C3)I_ +(C 4 -C5)I p +---_c'2A9 cosh2a' +l.-J.--c"2B._ cosh2a" = 0
- 12 " (127)

-7o -- =C2 +C3)I 4 c,2Agcosh4a, 1 c,,2B, cosh4a,, +.._l c,2A3cosh4a,+lc,,2B3cosh4a,, 0
- 30 - 80 80

_+ ------- + c '2 cosh 2na
2n 2n -1 2n + l 2n -1 " 2t7+1

+ _ _ + _ + C *t2

2n [2n -1 2n+1 2n -1 " 2n + l

forn = 3,4 ......

The condition that the moment also vanishes at the edge gives

{ (@" D3) 3(3D3+ } 9 2(Dl+ 2(D2+D3)C5 03(3D1 + O2)C1 + + 302 + 2D4 +"7- C 2 + D 2)C 3 lp + D 2)C 4 + -- ,

(12D1C 1 -12D3C3)12 + 2(D 1 - D2)C 4 + 2(D 2 - D3)C 5

{1 1 }+ 7(D1- D2)cosh4a'-7(D 2 - D3)k ? coshea'- D4k 1 sinh4a' A 2

+{I(D 1 - D2) cosh4a ' 1 }- _'(D 2 - D 3)k 2 cosh 4a" - D 4k 2 sinh 4a" B 2 = 0,
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1-D_)C1 D_ + 2D 4 2 +3(£)3 - D_ ,'_
- 2 -

+ _7 - -7

{1 71(D2-Ds)kfc°sh6a"-D4k_sinh6a'} =0
+.8_ (D,- D_)co,h6a"-

+ A,z{DI + D2 -(D 2 + Ds)k_}cosh2na"

2 2 - - -
J

' _ - - - 2 - - '

and the general curvatures for any radial position become

(128)

O_2W

,gx2 = Z (A,, cosh 2na'cos2nfl'+ B,, cosh 2na"cos 2nil")+ 12C_x 2 + 2C2y 2 + 2C 4
n=2

032W oo

= cos 2nil + B,,k 2 cosh 2na"cos 12C3x a + 2C 5oqy2 -Z ( A',k2 cosh 2n_' , 2 2nil")+ 2C2 x2 + 2
n=2

_2 W

axay

o0

----- = -Z 0', k' sinh 2not'sin 2nil" + B,,k 2 sinh 2na" sin 2nil")+ 4C2xy
n=2

(129)

or in curvilinear coordinates
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6_ 2W

&v 2 = Z (A,, cosh 2na'cos 2n,6" + B,, cosh 2na"cos 2n/3")+ (6C, + C2 ) r2 + 2C4 + (6C, -C2 )r2 cos 2/3
n=2

oo

- -y__,(A,,k,oosh "- cos 2n[3 + B,,k 2 cosh 2n cos 2nil")+ (6C 3 + C 2)1.2
,v=2

+ 2C 5 _ (6C3 _ C2 }2 cos 2/3

(130)

O_2W _ oo

Ox o_ - -£ (A,,k, sinh 2ha'sin 2n/_' + B,,k 2 sinh 2na"sin 2n/3")+ 2C2r 2 sin 2/3.
n=2

The constants A,,'s, B,,'s, and Ci's are noted to be functions of q//and various powers of re. Thus

the q, t and rp terms can be factored from the curvature equations and the curvatures written in a

form more typically used to describe plates. This also allows the constants for a given crystal

system to be determined only once by setting the terms to unity in Equations (109), (118), (125),

(127) and (128) (i.e. solving Okubu's boundary equations). The curvatures in a general format

with q, r and t factored become

02W q'J _(A,, cosh2na'cos2n/3' + B,, cosh2noc"cos2n/3"

+(6C, + Ce +(6C,--62)cos2_).-._--]-.264
r

p

£ (A.k 2_cosh2noc'cos2n_" +Bnk22 cosh2nc_" cos2n_"
n=2 2

+ (6C_ + C 2 - (6C_ - C2 )cos 2 fl)_- + 2C 5
r

p

(131)

=_ _ w 1,2

0 2W qrPt k 1 sinh 2no_'sin 2n/3'+ Bnk 2 sinh 2noc sin 2n[3" + 2C 2 7-sin 213
2

lp

and the displacement function becomes
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W-" q

3
t

[cosh(2,,+2)_' . . _ r

-7-_A" cosh(2,,-2)_ . . , +1)2,,+
: [+(2,,-_2,,-2)c°S_2"-e_

[cosh(2n + 2_" , , ,, [

4 B,, cosh(2n-2)_ . ._. +1)2.

,]1) cosh 2na" 2nil2n(2n - cos

, ]+ 2n(2n - 1) cosh 2na"cos 2nil
(132)

in Okubu's format or

4

w= qrp
8t 3

cosh(2n + 2):z' , cosh(2n - 2)o¢'
-(_:--__,Y*;icos(2,,.2)_. _--__-__.__os(2n-2)_2(,-k_)£A,,,,_ _,,-,_2,,-2_

I_[ + _--_--_(_--;;j_os,-,:_,,_oos2,,_- (2n + 1)2n

[ cosh(2n + 2):x" cosh(2n - 2_" cos(2n - 2)13"
-, j _--_-X_-n--7.i3 ) cos(2n + 2)fl" + (2n -1Xzn- 2)

+ 2(1-k2)£B , + 1 ](2_+1)2_ 2,(2,-1) :osh2_':os 2_"[L
4

4- {(C 1 -6 2 -.I-C 3 )(COS4,t3 + 3)+ 4(C 1 -C 3 )COS2/3 + 4C 2 }--_-
rp

2

+ 4{(C4-C5)cos 2_ +C 4 +C5 }_+8C 6
r

P

(133)

in curvilinear coordinates only and a form more similar to that used to express the displacements

of circular plates.

The constants for both NiAI and an orthotropic graphite epoxy composite are given in Table

4.4.3.1. As can be seen from Table 4.4.3.1, the solution converges rapidly, especially for {100}

plates of NiAI. The computer code used to calculation the constants in given in Appendix B.

Note that Okubu's model is capable of analyzing only {100} or {110} plates and cannot be used for

generally anisotropic plates (e.g. {111} or {511} plates) because they have fully populated stiffness
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matrices and exhibit bend/twist coupling which complicates the elastic solution due to ill-defined

boundary conditions. However, fully anisotropic plates are of interest because they are more

representative of a complex component. Thus, the finite element analysis method with gap

elements at the supports might be used for analysis of such general cases. The gap elements

should account for "lift off" from the supports as necessary. Another minor complication with

Okubu's solution is that it does not consider the stiffening effect of overhang, which occurs when

the plate is larger than the support. Practically, overhang is necessary to prevent the test

specimen from falling off the support and to minimize the tangential stresses at the test specimen

edge and thereby avoid edge failures. Based on the isotropic solution, if the support diameter is

within 95% of the specimen diameter the error in the maximum stress is less than 2% and if the

support diameter is within 90% of the test specimen diameter the error is less than 4%.

Table 4.4.3.1" Displacement solution constants (x10 6) for NiAI and graphite/epoxy plates of unit

thickness and radius subjected to a unit lateral pressure.

C1

1.392

NiAI:

$22= $1_= 1.0428, S_2= -0.421, Soo= 0.892 (x 10 .5m2/MN) (Wasilewski 1966)

C2 C3 C4 C5 C6 A2 B2 A_

2.009 1.392 -7.253 -7.253 5.958 0.474 -0.105 10 -15

Graphite Epoxy:

SH = 0.6667, $22= 11.11, S_2= - 0.2000, So6= 14.08 (x 10 .5m2/MN) (Lee and Saravanos 1995)

C1 C2 C3 C4 C5 C6 A2 B2 A3

2.741

93

10 -16

93

9.046 4.080 -15.52 -16.34 12.24 0.385 0.385 0.079 0.079

4.5 BIAXIAL RIG VERIFICATION

4.5.1 The Isotropic Case

Ideally, the test rig will generate stresses described by simple plate theory. A comparison was

made between isotropic plate theory (Szilard 1974) and the stresses measured with stacked,

NASA/TMm2002-210519 79



rectangular strain gage rosettes 3 placed at eight radial positions on the tensile surfaces of two

4340 steel disk test specimens as shown in Figure 4.5.1.1. The strain-gaged biaxial flexure test

specimens were inserted in the test fixture, pressurized and removed repeatedly while the strain

was recorded as a function of pressure. The average of at least three slopes, as determined by

linear regression of strain as function of pressure, were used to calculate the mean strains and

stresses (Measurements Group Tech Note TN 509 and TN 15). A maximum pressure level of

6.90 MPa (1000 psig) was deemed adequate because the strains developed approached the

strain limit of the gages and the errors were noted to decrease as the pressure increased.

Because the calculation of stress from strain via constitutive equations requires the elastic

modulus and Poisson's ratio, measurements were made by the flexural resonance of the disk test

specimens (ASTM C 1259 1995). The estimated elastic moduli and Poisson's ratio were 204.0 +

0.4 GPa and 0.29, in good agreement with handbook values (CINDAS/USAF 1997).

During pressurization cycles, the rig was noted to exhibit a significant hysteresis when the support

ring was not lubricated. The loading slope was very linear and the unloading cycle very nonlinear,

particularly near the load reversal. However, if the specimen - support ring interface was

lubricated with an anti-seizing compound 4, the hysteresis was substantially reduced and the

strains increased. This behavior can be explained by the specimen slipping across the support

ring during loading but sticking briefly upon load reversal. Because strength measurement only

involves the loading slope only, loading data was regressed for comparison to plate theory. The

slopes of the loading curves typically exhibited correlation coefficients greater than R2 = 0.999.

The application of hydraulic oil to the specimen - support ring interface had little effect on the

measured stresses, as shown in Table 4.5.1.1.

For the lubricated condition and a pressure of 6.90 MPa agreement between plate theory and the

measurements was within "~1% at the disk center, within ~2% at 55% of the support radius and

within 9% at 75% of the support radius. In general, the errors increase with increasing radial

position, particularly for the tangential component. The results are summarized in Table 4.5.1.1

and shown in Figure 4.5.1.2 along with 95% confidence intervals.

3

Gage designation WA-06-030WR-120, Measurement Group, Raleigh, NC.

4 Never-Seez, Never-Seez Compound Corp., Broadview, IL.
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Figure 4.5.1.1"4340 steel plate with strain gage rosettes attached.
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The significance of the differences between the plate theory and the measured stresses can be

assessed by estimating the standard deviations and confidence intervals of the measurements.

The standard deviations of the strains and stresses were calculated from the apparent strain

variances by applying a truncated Taylor series approximation (Haugen 1980) to the transverse

sensitivity correction equations, the strain transformation equations and the stress-strain relations.

For a rectangular strain rosette, the standard deviations of principal stress, principal strain and

principal strain uncorrected for transverse strain errors are

,SO (yp - -I-
1-v q

1 v 2 v SD +SD_-- q

1- vokt /SD ap = ] _ k 2 SD_p + k t SD2q

SD_q = ] _ k2 kt SD + SD2q

SD_p,q -" -- _] _"2 802 Jc 802 "F -'F_ 8023 (134)

where E and v are the elastic modulus and Poisson's ratio of the test material, Vo is Poisson ratio

of the strain gage manufacturers calibration material, is the transverse sensitivity of the strain

gage, g,,g'_,g3 are the apparent strains and SDxi is the standard deviation of the x i variables:

_p and _q being the uncorrected principal strains, ep and eq being the corrected principal strains,

and ap and aq being the corrected principal stresses. The elastic constants in Equation (134)

are assumed to be exact for a single test specimen.
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Figure 4.5.1.2: Measured and theoretical stresses for a 4340 steel disk as a

function of normalized radial position. Error bars indicate the 95% confidence

intervals.
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Table 4.5.1.1" Measured stresses, standard deviations and theoretical stresses for a 25 mm

diameter, 4340 steel disk subjected to 6.90 MPa uniform pressure.

Radial Position

Percent of

Support

1.7, Unlubricated

33, Unlubricated

43, Unlubricated

55, Unlubricated

69, Unlubricated

75, Unlubricated

1.7, Oil

33, Oil

43, Oil

56, Oil

69, Oil

75, Oil

1.7, Anti-Seize [lj

33, Anti-Seize

43, Anti-Seize

55, Anti-Seize

69, Anti-Seize

75, Anti-Seize

1.7, Clamping

33, Clamping

43, Clamping

69, Clamping

Theory
[2]

Radial Stress, MPa

Percent

Measured [3] Difference

465 418+0.6 -10

415 393+0.2 -3.3

377 348+0.3 -6.1

318 278+3.6 -12

237 209+3.6 -9.2

194 162+ 1.3 -16

465 418+2.9 -10

415 398+2.7 -3.9

377 351+3.2 -6.9

318 277+1.5 -13

237 211+0.9 -11

194 161+0.6 -17

465 459+2.2 -1.3

415 414+3.2 -0.2

377 365+2.9 -3.1

318 318+1.5 0

237 231+5.5 -2.2

194 205+2.5 5.6

-4.9+1.0

0.5+0.1

0.2+0.2

O.5+O.4

[1] Never-Seez, Never-Seez Compound Corp., Broadview, IL.

[2] See (Szilard 1974).

[3] Mean + one standard deviation.

Tangential Stress, MPa

Theory
[2]

465

436

415

382

335

311

465

436

415

383

335

311

465

436

415

383

335

311

Measured TM

432+O.9

409+O.3

391+0.4

336+2.3

311+0.1

265+1.3

432+1.6

311+2.9

396+1.3

336+1.8

310+1.5

266+0.6

470+3.0

432+5.1

41O+4.8

374+1.0

330+8.2

305+2.7

0.9+1.0

2.3+0.3

2.8+0.4

3.6+0.5

Percent

Difference

-12

-11.2

1.1

-1.0
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The clamping forces exerted by the O-ring and cap on the specimen resulted in stresses on the

specimen surface. The level and consistency of these stresses were measured by repeatedly

inserting and removing a strain-gaged specimen from the fixture. The stresses generated by

clamping varied with orientation and radial position. During three clampings, the principal

stresses averaged -4.9 + 1.0 and 0.9 + 1.0 MPa, respectively at the disk center, and 2.3 + 0.3 and

0.5 + 0.1 MPa, respectively at 33% of the support radius. The maximum principal stresses

observed in the unlubricated condition were 5.5 and 1.3 MPa at the disk center. As the

specimens deflect and slide across the support ring during pressurization, these clamping

stresses may be relieved.

Thus, stresses generated by the test rig in a lubricated, isotropic plate can be described (Szilard

1974) by

_ !.1 ° 8t 2 - v +2(1+

3qR_ (]_v)R__ +2(]+v)_(]+3v) +0"_ (135)
or°°- 8t 2 R_

_ q(3+v)

G, - 4(l- v)

were q is the applied pressure, R_ is the support ring radius, t is the disk thickness, Rd is the disk

radius and r is the radius of interest. The term _s is a small correction factor to the simple plate

theory for the effects of the shearing stresses and lateral pressure on the plate deflection

(Timoshenko and Woinowsky-Krieger 1959).

4.5.2 The Anisotropic Case

To compare the test rig with the solutions of Okubu, single crystal NiAI disk test specimens were

machined with the face of the disk corresponding to the {100}. One specimen was strain gaged at

four locations and pressurized to 4.8 MPa in the rig with anti-seizing lubricant on the boundary.

The strain gage positions corresponded to ~50% of the support radius (Le. r/rp = 0.5) with one

gage located along the <100> and the others along the stiffer <110> directions. The resulting
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stresses are shown in Figure 4.5.2.1 and summarized to Table 4.5.2.1. The stresses calculated

with the series solution are within 2% of the measured stresses at the plate center and within 6%

at approximately 50% of the support radius.

To further verify the test rig, nine disk test specimens were strain gaged and pressurized to

failure. The maximum strain at failure is compared to those calculated with Eqs. (114), (115) and

(131) in Figure 4.5.2.2. The strains generated in the rig lie between those of the solutions, with

the approximate solution overestimating the average measured strains by ~5% and the series

solution underestimating the rig data by approximately 3%. However, neither the approximate or

series solutions consider the effect of lateral pressure and shear on the strains and stresses. If

the isotropic correction term, _, in Equation (135) is used with the Poisson's ratio of

polycrystalline NiAI (v = 0.31 (Noebe et al. 1993)) to approximate the error, an addition strain of

Table 4.5.2.1" Measured stresses, standard deviations and theoretical stresses for a 25 mm

diameter, {100} NiAI single crystal plate supported on a lubricated [1]steel ring and subjected to a

4.8 MPa uniform pressure.

Radial Position

Percent of

Support Radius

and Angular

Position

2, center

44, < 100>

Radial Stress, MPa

Plate Percent

Theory [2] Measured [3] Difference

MPa MPa

305.7

259.8

300.1+1.0

251.3+3.1

232.9+1.0

223.7+1.0 +3.6

_oundCorp., Broadview, IL.

51, < T 10 > 234.2

50, < 710 > 215.9
....

[1] Never-Seez, Never-Seez Com

[2] See (Okubu 1949).

[3] Mean + one standard deviation.

Tangential Stress, MPa

Plate

Theory [2]

MPa

305.7

272.2

274.8

299.3

Measured [3]

MPa

311.2+1.2

264.4+1.7

262.8+1.0

288.8+1.0

Percent

Difference

+1.8
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Figure 4.5.2.1" Measured and theoretical stresses for a {100} NiAI disk test

specimen as a function of normalized radial position. The support

ring was lubricated with anti-seizing compound. Error bars indicate

the 95% confidence intervals: (a) <100> direction and (b) <110>

direction.
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approximately 1.7% is expected, implying that the bending stress components generated by the

test rig closely approximate the series solution. However, the beneficial effect of the lateral strains

are mitigated by the effect of overhang.

Thus, considering the complexity of the series solution relative to the approximate solution, the

use of the approximate solution for practical engineering purposes is reasonable.

4.6 BIAXIAL STRENGTH TESTING

4.6.1 Isotropic Material

The biaxial strengths of ten WC test specimens were measured using the pressure-on-ring (POR)

test rig as discussed in Section 4.4. Table 4.6.1.1 summarizes the test specimen dimensions. The.

strength was calculated from the maximum value of Eq. (135):

- -v +2(l+v +(y
_'u_s 8t __ (136)

where the symbols are as defined in Eq. (135).

Table 4.6.1.1 Test specimen dimensions for the isotropic case.

Specimen Configuration

(number tested)

Three-point, "A" Beams (29)

Biaxial, POR (10)

Mean [lj

Thickness or height

mm

1.50 + 0.002

Mean Width

or Radius

mm

1.98 + 0.07

[1] Mean + one standard deviation.

2.22 + 0.004 25.40 + 0.005

Support Span or

Radius

mm

20.02

22.74
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4.6.2 Anisotropic Material

Thirteen NiAI disk test specimens with {100} orientation were pressurized to failure in the POR

test apparatus. Table 4.6.2.1 summarizes the test specimen dimensions. A nominal pressure rate

resulting in a strain rate corresponding to that used in the flexure testing was applied (104/s). The

support ring was lubricated in order to minimize the effects of friction. For the approximated

solution, the strength was calculated from the maximum values of Eq. (116):

UTS,cubic -- 64D,_.bi _ S_ + S_2 (137)

where the symbols are as defined in Eqs. (109) to (113).

Table 4.6.2.1 Test specimen dimensions for AFN12 single crystal NiAI specimens tested in
biaxial flexure.

Specimen Configuration

(number tested)

Biaxial, POR (13)

MeanFf _

Height or Thickness

mm

1.49 + 0.004

[1] Mean + one standard deviation

_m ean

epth or Diameter

__+rn

Support

Span or Diameter

mm

23.19

NASA/TM--2002-210519 90



CHAPTER 5" EXPERIMENTAL RESULTS" MATERIAL PROPERTIES

AND VERIFICATION TESTING

5.1 ELASTIC PROPERTIES

The elastic modulus of the WC was 607 + 3 GPa and Poisson's ratio was 0.22.

A mean and standard deviation of 96.9 + 1.0 GPa was measured on the <100> and 187 +

2.7 GPa on the <110> orientation of the NiAI. These results are in good agreement with the

published values of 95.9 and 187.3 GPa (Wasilewski 1966) and within 10% of the published

values of 86.0 and 205.0 GPa (Rusovic' and Warlimont 1977), implying that the small percentage

of alloying elements has not substantially altered the elastic properties.

5.2 UNIAXIAL STRENGTH

5.2. 1 Isotropic Material

Table 5.2.1.1 summarizes the measured uniaxial strength of the WC test specimens. The 90%

confidence intervals (Abernathy et al. 1983) are included. The maximum likelihood method was

used to calculate the Weibull parameters (Jakus et al. 1981 and Sonderman et al. 1985).

Table 5.2.1.1" Measured flexural strength statistics and 90% confidence intervals for W C.

Specimen

Configuration

(number tested)

Three-point, "A" (29)

[1] + one standard deviation.

Mean [_j

Strength

MPa

2910 + 223

Characteristic

Strength, cre

MPa

3001

9O%

Confidence

Bands on cre

2950, 3053

Weibull

Modulus

m

19.0

90%

Confidence

Bands on m

14.9, 24.2
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5.2.2 Anisotropic Material

Tables 5.2.2.1 and 5.2.2.2 summarize the measured uniaxial strength of the NiAI test specimens.

Detailed test results are given in Appendix C. The 90% confidence bands (Abernathy et al. 1983)

are included for the determination of the statistical significance of the observed differences in

measured strength. The mean strength and standard deviation of the specimens from each billet is

shown in Figures 5.2.2.1 and 5.2.2.2. Note that two of the <100> billets exhibit an average strength

somewhat significantly greater than the remaining billets. The resulting probabilities of failure as a

function of stress are shown in Figure 5.2.3 for <100> and <110> orientations. Censored Weibull

statistics were used to rank the data (Jakus et al. 1981) and the maximum likelihood estimator

(MLE) (Sonderman et al. 1985) was used to calculate the Weibull parameters. The characteristic

strength and mean strength as a function of orientation in the {100} plane are shown in Figures
5.2.2.3 and 5.2.2.4.

5.3 FRACTOGRAPHY OF THE FLEXURE SPECIMENS

Scanning electron microscopy was performed to determine the source of test specimen fracture.

The results are summarized in Table 5.2.2.2.. The <100> specimens fractured predominately

from inclusions protruding from the machined surface, Figure 5.3.1. However, the <110>

specimens failed from a mixture of inclusions and electro-discharge machining damage (EDM),

even though all the flexure specimens were prepared together in a like manner. Energy and

wavelength dispersive analyses s of the inclusions typically indicated large amounts of hafnium

(Hf) with smaller amounts of titanium (Ti) and carbon (C), implying complex carbides of the form

(HfTi)C. Occasionally a significant oxygen peak was obtained, implying the presence of both HfO

and (HfTi)C. However, because the dominant signal indicated Hf with the presence of C, the

inclusions will be referred to as HfC. Thus, as carbide are the inherent strength limiting

mechanism, lowering the Carbon content during processing should reduce the frequency and/or

size of HfC inclusions and thereby increase strength.

Note that the inclusions are three dimensional and bonded to the matrix and therefore probably

support significant tractions. Further, the thermal and elastic constants may be substantially

different from those of the NiAI matrix. Thus the flaws are not the ideal, classical concept of open
closed cracks.

5 IMIX-PC Prism Digital Spectrometer, Princeton Gamma Physics, Princeton, NJ.
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Table 5.2.2.1" Flexural strength of AFN12 single crystal NiAI - normal statistics.

Orientation and

Flexural

Configuration

<100> 3-point

<100> 4-Point

<110> 3-Point

< 110> 4-Point

< 110> 3-Point

<110> 4-Point

Failure tlj

Location

and Type

S-HfC

S-HfC

S-HfC

S-HfC

S-EDM

S-EDM

Number

of Tests

15

32

15

19

Mean

Strength

MPa

1261

1010

767

629

466

34O

Standard Deviation

of Strength

MPa

2O9

2O2

177

130

69

107

Coefficient

of Variation

0.17

0.20

0.23

0.21

0.15

0.31

[1] S = surface" EDM = electro-dischargemachining scar. HfC = Hafnium carbide inclusion.

Table 5.2.2.2: Flexural strength of AFN12 single crystal NiAI - Weibull statistics.

Orientation and

Flexural

Configuration

< 100> 3-point

<100> 4-Point

<110> 3-Point

< 110> 4-Point

<110> 3-Point

<110> 4-Point

Failure [lj

Location

and Type

S-HfC

S-HfC

S-HfC

S-HfC

S-EDM

S-EDM

Characteristic

Strength

_e, MPa

1350

1094

843

689

474

9O%

Confidence

Bands for cre

1258 to 1475

1032 to 1158

754 to 933

642 to 735

Weibull [2j

Modulus

//?

6.1

5.4

4.8

5.5

4.6

9O%

Confidence

Bands for m

4.4 to 8.5

4.3 to 6.8

2.2 to 9.2

3.5 to 8.2

[1] S = surface; EDM = electro-dischargemachining scar. HfC = Hafnium carbide inclusion.

[2] Weibull modulus and characteristicstrength were determined with the maximum likelihood method.
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Figure 5.2.2.1" Average <100> four-point flexural strengths and 90% confidence

intervals for AFN12 single crystal NiAI billets.
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Figure 5.2.2.2" Average <110> four-point flexural strengths and 90% confidence

intervals for AFN12 single crystal NiAI billets.
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Figure 5.2.2.3" Weibull distributions for the <100> and <110> orientations of

AFN12 single crystal NiAI tested in three and four-point flexure.
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single crystal NiAI tested in four-point flexure.
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AFN12 single crystal NiAI tested in four-point flexure.
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Despite the fact that the principal stress was oriented to induce cleavage along a low index plane,

the test specimens did not appear to macroscopically cleave on the cleavage plane common to

cubic crystals (Le. {100} and {110}), as shown in Figures 5.3.2 and 5.3.3. However, the fractures

(due to EDM scars or HfC inclusions) appeared to have occurred on a specific plane, rather than

conchoidally as facets extending from the HfC inclusion are apparent. This was in contrast to

observations on test specimens that failed during machining or handling-theses exhibited

macroscopic cleavage along the {110}. For some materials cleavage only occurs in a well-

defined manner when appropriate conditions of stress and or crack velocity exits. If these

conditions do not exist, then conchoidal fracture occurs. In order to determine the orientation of

the fracture facets, Laue X-ray analysis of selected cleavage facets was performed. The

specimens were mounted on a holder with two mutually perpendicular axes of rotation and

examined with a microscope that had a collimated light aligned with the microscope axis. The

light source was used to align the facet normal to the axis of the microscope and holder by

seeking the fullest reflection. The holder was then transferred to an X-ray machine.

X-ray analysis did not identify a dominant crystal plane associated with the facets. Instead the

fracture facets near the origin of these samples appeared to propagate along various high index

planes. Figure 5.3.4 is a summary of the major crystal planes identified in six different <110>

four-point flexure specimens. The only similarities associated with these cleavage planes are the

fact that they are all high index, consist of near center-triangle orientations, and are all far from

(011). This is nominal agreement with Blankenship's results that show facets from several

families of planes.

The test specimens that were fractured in four-point flexure and those that fractured during the

machining and handling process were subjected to substantially different stress states, strain

energies and loading velocities. Thus the effect of impact and crack velocity were briefly

investigated to determine if more defined facets could be generated. Additional flexure tests were

run at stress rates of 13,270 MPa/s and 27,930 MPa/s. In addition, several Charpy impact tests

were run at both room and liquid nitrogen temperatures. Again, fracture occurred on high index

planes with similar bifurcation angles as those shown in Figure 5.3.2.
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(a)

(b)

Figure 5.3.1" Failure origins in AFN12 NiAI single crystal flexure specimens- (a)

Hf rich inclusion in a <100> test specimen, and (b) EDM damage in a <110> test

specimen.
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...... __._f...; ...... i

(b)

1 mm

Figure 5.3.2" Typical bifurcation pattern observed on the surface of <110>

flexure test specimens: (a) overall flexure test specimen and (b) detail of a

fracture location.
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Failure origin

Fracture Facet (apparent cleavage plane)

Figure 5.3.3" Side view of a segment from a fractured AFN12 <110> four-point

flexure test specimen.
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It should be noted that the fracture mirrors about the EDM origins are nominally {110}, and the

crack bifurcation is symmetric about the {110} in all cases. Because substantial strain energy is

stored during flexural testing but typically not during failure due to machining/handling (which

occur via local contact stresses), the crack may be "over driven" during flexural fracture and thus

turns off the {110}. The stored strain energy can be reduced by stiffening the specimen, fixtures

and load cell. Limited proof of this concept is shown in Figure 5.3.5, where the bifurcation angle is

plotted as a function of fracture stress, indicating that the bifurcation angle tends to increase with

increasing fracture stress and thus stored energy.

An alternative explanation (Darolia et al. 1993) for the lack of {110} cleavage is that under

conditions where microplasticity occurs, cleavage deviates from {110} to a series of high index

planes centered around {511} and {711}, which is somewhat consistent with the observed

cleavage planes summarized in Figure 5.3.4. In the absence of microplasticity, cleavage will

occur along {110}. In some respects, these two explanations are complimentary since greater

strain energy can be stored in the material as microplasticity occurs.

Another explanation for the variation in cleavage angle observed on the specimen tensile surface

is the variation in secondary orientation. Unless the cleavage planes are orthogonal to the test

specimen orientation (i.e. <110>), variation in the secondary orientation will cause a variation in

the angle traced on the tensile surface of the specimen. The correlation of strength with observed

angle could also imply an effect of secondary orientation on strength.

imparting damage in the grinding direction, allows accurate tolerances while imparting minimal

damage in the test direction (ASTM C 1161 1990).

5.4 BIAXIAL STRENGTH

5.4. 1 Isotropic Material

Table 5.4.1.1 summarizes the measured uniaxial and biaxial strength of the WC test specimens.

The 90% confidence intervals (Abernathy et al. 1983) are included for the determination of the

statistical significance of the observed differences in measured characteristic strength and Weibull

modulus. The mean strength of the disk test specimens is 20% less than that of the uniaxial test
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specimens and the difference is statistically significant. The difference between the Weibull moduli

for uniaxial and biaxial data is not statistically significant at 90% confidence. The maximum

likelihood method was used to calculate the Weibull parameters (Jakus et al. 1981 and

Sonderman et al. 1985).

5.4.2 Anisotropic Material

Table 5.4.2.1 summarizes the measured biaxial strength of the NiAI test specimens. Detailed test

results are given in Appendix D. The 90% confidence intervals (Abernathy et al. 1983) are

included for the determination of the statistical significance of the observed differences in

measured characteristic strength and Weibull modulus.

Table 5.4.1.1 Measured strength statistics and 90% confidence intervals for WC.

Specimen

Configuration

(number tested)

Three-point, "A" (29)

Biaxial, POR (10)

Mean [,j

Strength

MPa

2910 + 223

2320 + 144

[1] Mean + one standard deviation.

Characteristic

Strength, ere

MPa

3001

2379

9O%

Confidence

Bands on (re

2950, 3053

2323, 2436

Weibull

Modulus

/17

19.0

23.0

9O%

Confidence

Bands on m

14.9, 24.2

15.3, 34.5

Table 5.4.2.1 Measured strength statistics and 90% confidence intervals for AFN12 single crystal
NiAI tested in biaxial flexure.

Stress

Solution

Meant'J

Strength

Characteristic

Strength, ere

90%

Confidence

Weibull

Modulus

9O%

Confidence

Approximate

Series

Approximate [zj

Series tzj

MPa

47O + 109

431 + 100

477 + 111

439 + 102

[1] Mean + one standard deviation.

MPa

511

469

519

478

Bands on ere

466, 559

428, 513

473,568

.436, 524

[2]. Estimate includes the effect lateral pressure as calculated from Eq. (135).

m

5.3

5.3

5.3

5.2

Bands on m

3.7, 7.6

3.6, 7.4
i
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The strength distributions of the uniaxial and biaxial flexure strength data are shown in Figure

5.4.2.1. The mean strength of the NiAI biaxial test specimens is 431 MPa. The Weibull modulus

is 5.3, implying the same flaw population as measured in the uniaxial specimens. The maximum

likelihood method was used to calculate the Weibull parameters (Jakus et al. 1981 and

Sonderman et al. 1985). Also included in the table in the effect of lateral pressure on the plate

deflection, assuming that the isotropic solution in Eq. (135) is applicable.

5. 4.3 Macroscopic Failure Analysis of the Disk Test Specimens

One advantage of biaxial specimens is the multiplicity of planes subjected to large stress over a

large area, thereby sampling many flaws and allowing any cleavage plane to induce fracture and

be followed for a macroscopically observable distance.

The disk test specimens exhibit a distinct, macroscopic failure pattern as shown in Figure 5.4.3.1.

Fracture, as viewed on the {100}, typically occurs along a single direction and rapidly branches in

three other directions: one at 90 ° to the main direction and two other directions that form a 90 °

angle to each other and 60° and 150° angles to the initial direction. Essentially the traces on the

{100} form two sets of orthogonal directions rotated 60 ° to each other. The pattern is repeated

across the disk in a varying degree until the edges are approached and the pattern becomes

conchoidal. The angles between the <100> and the observed cleavage traces are listed in Table

5.4.3.1 and plotted with the 90% confidence intervals on a (001) pole figure in Figure 5.4.3.2 for

eight of the test specimens. The macroscopic cleavage directions in the (001) nearly correspond

to the <310> directions. However, because the planes forming the directions are not normal to

the (001) surface, the actual cleavage planes are located in the interior of the pole figure along the

line emanating from the <310> directions intersecting the perimeter of the pole figure (i.e. the

<310> "great circle"). This implies that the preferred set of macroscopic planes for crack

extension is not one of the typical {001}, {110} or {111} sets.

The radial failure position and angle relative to the <100> direction was measured on eight of the

disk surfaces, as shown in Figure 5.4.3.3. The data is plotted in a single quadrant as the crystal

symmetry repeats every 90°. The radial positions of failure relative to the support ring radius

ranged from 0.20 to 0.55 wherein the stresses are greater than 70% of the maximum, equibiaxial

stress. The minimum angle from the <100> associated with the dendrite growth direction to the
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Figure 5.4.2.1" Weibull distributions for the flexural strength of AFN12 single

crystal NiAI. Included in the plot are the data for the <100> and <110>

tested in three and four-point flexure (beams) and the {100} tested in biaxial

flexure (disks) by application of a uniform pressure.
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(a)

(b)

Figure 5.4.3.1" NiAI single crystal disk test specimens failed by application of

a uniform pressure" (a) specimen B11 and (b) specimen B5.
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Figure 5.4.3.2" Standard (001) pole figure showing the macroscopic failure

directions exhibited by AFN12 single crystal NiAI biaxial test

specimen. Arrows on the perimeter indicate the measured mean

directions and standard deviations of the cleavage directions

observed on the (001).
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Table 5.4.3.1 Macroscopic cleavage directions and 90% confidence intervals in the (001) plane of

single crystal NiAI tested in biaxial flexure. Measurements are clockwise from the _00] direction.

Also listed are the angles from the [100] to the <310>.

Mean, degrees

90% Confidence

Angles to <310>

16+3

18

75+4

72

106+3

108

166+ 1

162

failure location ranged from 18° to 62° with a mean of 41 + 16°. Also plotted in Figure 5.4.3.3 in

the direction of the macroscopic cleavage plane relative to the <100> dendrite growth direction. In

all but two of the test specimens, the minimum angle was toward the <310> associated with the

<100> direction corresponding to the dendrite growth direction instead of its compliment. This

implies a preference or bias in the properties toward the <100> associated with dendrite growth.

The bias of the failure position to the <110> directions implies that the larger tangential stress or

lower strength associated with the <110> influences failure. Because the <110> are orthogonal in

the {001}, the <110> directions are subjected to both the radial and tangential stress components

at any radial location along a <110>. Thus, failure would be expected to initiate and propagate

along the <110> radial directions if the <110> is the weak plane and the maximum principal stress

dominated failure. However, as shown in Table 5.4.3.1 and Figure 5.4.3.2, the macro extension

plane is not the <110> and either a weaker cleavage plane exists or the combined stresses cause

propagation elsewhere.

Particularly noteworthy is a slight jog in the direction of crack propagation at the failure origin. The

failure origins observed in the flexure specimens are finite and three-dimensional HfC inclusions.

Thus, the jog may be a result of the failure initiating on one side of an inclusion and traveling

around or through it. The jogs are relatively small and optical measurement of the associated

angles was not feasible. Detail electron fractography is required to determine the exact failure

location and the cause of the jog. The failures could initiate within the inclusion, outside of the

inclusion, or at the inclusion-NiAI interface.

NASA/TM_2002-210519 111



O

io _,

1.0 , __
i //

0.8 _.,,,,&
i ...../........................Y '#

0.6

0.4 _.............../ ............./o ............_<............}x:........... _30_,

0.2 _}/O;i.. .......................................::i O.....}):...............................:/..... Dendrite
i ./};/ii......../...:;x.O.....................:_'_........................':_ '_ Growth

0.0 < >

0.0 0.2 0.4 0.6 0.8 1.01010]

Failure Radius/Support Radius, r/r
P
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single crystal biaxial test specimens.
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5. 4.4 Fractography of the Disk Test Specimens

As in the flexure test specimens, failure occurred from coarse Hf rich inclusions, as shown in

Figure 5.4.4.1. Energy dispersive analysis of the inclusions indicated Hf, Ti and C, as shown in

Figure 5.4.4.2, implying complex (HfTi)C carbides as in the uniaxial test specimens.

The river marks and tail next to the inclusion imply that fracture initiates along the interface of the

inclusion at or near tensile surface, Figure 5.4.4.3. In some cases, a second smaller tail is

apparent on the other side of the inclusion implying the initiation of a second crack immediately

after the initial failure. The primary crack wraps around the inclusion and either meets the

secondary fracture or jumps across the HfC inclusion as it fails. Exactly when the inclusion

fractures is not clear, however, observation of both the uniaxial and biaxial flexure test specimens

indicate that the inclusions typically fail instead of pulling out of the NiAI matrix, as shown in Figure
5.4.4.4.

The initiation at the interface between the inclusion and the matrix can be explained by the

residual stresses that result from the thermal and elastic differences between HfC and NiAI. The

residual stresses are estimated and discussed in Section 6.

In order to measure the jog angle relative to the applied stress and crystal structure and determine

its source, the tensile surface of eight of the specimens were observed with in the electron

microscope. A typical jog and the corresponding fracture surface are shown in Figure 5.4.4.5.

The inclusions are typically located at one end of the jog with the initiation of fracture occurring on

the jog side of the inclusion. Thus the jog is not caused by the crack passing through or initiating

within the inclusion. The average angle of the jog direction relative to the <100> and the radial

direction of the disk are summarized in Table 5.4.4.1 and are plotted in Figure 5.4.4.6. The jogs

Table 5.4.4.1" Orientation of failure relative to the crystal structure and stress state.

Jog Length

62 + 28

Jog Angle

From < 100>

Degrees

44+5

Jog Angle from

Radial Direction

Degrees

45 + 34
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Figure 5.4.4.1" Failure origin in an AFN12 single crystal biaxial test specimen.
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Figure 5.4.4.3" Detail of a failure origin in an AFN12 single crystal NiAI biaxial

test specimen. A mixture of secondary and back-scattered

electrons were used for imaging.
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(a)

(b)

Figure 5.4.4.4" Mating fracture surfaces of an AFN12 single crystal biaxial

test specimen. Fractured inclusion can be observed on both

halves, implying inclusion fracture instead of pullout.
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(a)

(b)

Figure 5.4.4.5" (a) Tensile surface of an AFN12 single crystal NiAI biaxial test

specimen and (b) corresponding fracture surface. Jog angle

relative to the macroscopic failure plane and <100> etch lines that

resulted from chemical milling are shown.
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have a mean length of 62 + 28/m_ on the tensile surface and extend along a 44 + 5° angle to the

<100> in the surface of the plate, which corresponds to the <110> trace. The jog planes are

nominally normal to plate surface, implying jog planes of {110} orientation. Note from Figure

5.4.4.6 that both tangentially and radially oriented <110> jog planes have produced failure (three

of radial orientation and five of tangential orientation), implying that neither the radial or tangential

stress component-dominated failure. As noted previously, the radial and tangential stresses at

the failure locations were within 70% of the equibiaxial stress and therefore similar. Also

summarized in Table 5.4.4.1 is the jog angle relative to the radial direction in the disk test

specimen. Note that the standard deviation of the angle of failure relative to the radial direction is

quite large as a result of the failure planes being either nearly radial or tangential. Thus failure

appears to be controlled locally by the crystal structure and location of the largest flaw dimension

in a multiaxial stress state in which the principal stresses are nearly equal.

Apparently fracture initiates at the interface of the HfC and NiAI matrix on the {110} and rapidly

branches onto a set of high-index planes associated with the <310> trace in the {100}. The <110>

extension on the plate surface occurs predominantly on the initiation side of the inclusion. Little

extension on the other side of the inclusion is observable on the plate surface because the crack

transits onto the <310> trace as it wraps around or travels through the inclusion. One explanation

for the branching is the multiplicity of low index planes available for the crack to extend on and

thereby dissipate energy. Figure 5.4.4.7 shows the idealized fracture pattern based on the

average crack angles measured.
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Figure 5.4.4.6" Failure locations in an AFN12 single crystal NiAI biaxial test

specimen. Symmetry was invoked and the positions plotted in a

single quadrant. The lines within the circles represent the local

direction of failure (i.e. the jog direction) extending from the HfC

origin.
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< 100>

<110>

Primary Failure Plane

-_iHfC

Failure

Origin

{ 100}

Figure 5.4.4.7: Generalized schematic failure pattern in AFN12 single crystal

biaxial test specimens. Angles between the directions illustrated

are based on average measurements on the {100}.
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CHAPTER 6" VERIFICATION OF THE ANISOTROPIC RELIABILITY MODEL

The formulations developed in Chapter 3 and the experimental results detailed in Chapter 5

provide a basis for verification of the reliability model given in Eq. (74). For isotropic materials,

Eqs. (88) and (89) are generally considered capable of predicting four-point strengths from three-

point strength data for brittle, isotropic materials such as polycrystalline ceramics and glasses.

The next section investigates that capability.

6.1 RELIABILITY-BASED STRENGTH PREDICTIONS

MATERIALS

FOR ISOTROPIC

The equivalent stress failure criteria given in Eqs. (29) to (32) and (44) and (45) were employed to

predict the biaxial strength of the WC disk test specimens from the measured strength

parameters of the smaller, uniaxial flexure specimens (Tables 5.4.1.1 and 5.2.1.1 ).

The resulting strength predictions from the uniaxial data and the associated 90% confidence

bands are compared to the 90% confidence bands of the measured biaxial data in Figures 6.1.1

for the SIFCs given in Equations (21) to (23).

The PIA and the maximum principal stress criteria, which are based only on the principal stresses,

were reasonable predictors of the materials measured biaxial flexure strength, despite the in-

plane shear stresses generated in the outer region of the plate. The normal stress criterion, which

implies that the normal stresses at any angle reduces reliability, was the most conservative of any

criteria considered and underestimated the data by approximately 8%. The ability of the fracture

mechanics failure criterion to predict the multiaxial strength data was dependent upon the SIFC

chosen, however, for all the SIFCs considered, the coplanar energy release rate was a slightly

conservative estimator of the biaxial strength data. In contrast, the noncoplanar energy release

rate and the maximum hoop stress factor resulted in predictions not statistically significantly
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different from the biaxial strength data. Use of the SIFCs of Smith et al. (Smith et al. 1967)

resulted in more conservative estimates from the shear sensitive failure theories. The criteria of

Batdorf for Griffith cracks and notches resulted in underestimates (-7%) similar to the coplanar

energy release rate (-6%) and the normal stress criterion. The characteristic strength predictions

were noted to be independent of the value of h used (for h = 0.5 to 20), however, the scale

parameter was a function of h.

6.2 RELIABILITY-BASED STRENGTH PREDICTIONS

MATERIALS" UNIAXIAL STRESS STATES

FOR ANISOTROPIC

As shown in Section 3.4.2, the predicted characteristic strength of a uniaxial test specimen is

independent of failure criterion and only a function of the ratio of effective areas. To determine the

applicability of the scaling equations (i.e. Eqs. (89) and (95) in Section 3.4.1 and 3.4.2) to this single

crystal NiAI alloy, the average Weibull modulus in Table 5.2.2 (m = 5.5) was used to calculate the

effective areas and predict the four-point flexural characteristic strength from the three-point flexural

data. The results are listed in Table 6.2.3. The predictions are well with the standard deviations of

the experimental results for both the <100> and the <110> orientations. Thus, the probability of

failure for uniaxial flexural of this NiAIcan adequately be described by

PEA - 1 - exp - or1
Go(0,) dA

or as follows in crystallographic notation

(138)

(139)

or in terms of a "crack density coefficient" (Batdorf and Crose 1974) as

(140)
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where the subscript <hkl> specifies the crystal direction parallel to the applied stress and k,,, is a

crack density coefficient now dependent on the stress orientation"

The scaling function becomes

(Ge,IGo2)<h_.,> -(Ae2/Ae,) l/m/<h,Z> " (142)

Note that this material does exhibit yield in compression at approximately 1650 MPa in the <100>

and at 1050 MPa in the <110> direction (Noebe and Garg 1995). It is unknown if this phenomenon

is volume dependent, however, deformation is typically not viewed as a volume dependent process.

Thus, for a sufficiently small test volume subjected to tension, yield, rather than brittle fracture, might

occur. Equations (89) and (142) indicate that a miniature, <100> three-point flexure specimen with 1

by 1.5 mm cross-section and a 6 mm support span would fail by brittle fracture at a tensile stress

greater than the compressive yield stress 90% of the time. The implication is that very localized (e.g.

contact) stresses, such as those at the root of a blade or vane, might cause yield rather than

fracture.

Table 6.2.3" Measured and predicted strength for AFN12 single crystal NiAI tested in uniaxial flexure.

Orientation

and

Failure Criterion

<100>

<110>

Measured

Characteristic

Strength

o'o, MPa

1094

689

90%

Confidence

Bands, O'o

1032 to 1158

642 to 735

Predicted

Characteristic

Strength

cro

1040

653
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6.3 ESTIMATION OF THE SCALE PARAMETER

The estimated scale parameter constants are given in Table 6.3.1 for maximum principal stress

criterion, the PIA criterion and the normal stress criterion. The computer code used to make the

estimates is given in Appendix E. For the more advanced criteria, values of ao<zo0>and ao<,o>

satisfying Equations (100) and (101) could not be numerically determined by using the form of

Equation (98) to describe the scale parameter. In order to determine if another function describing

the scale parameter as a function of orientation was more tractable, several other functions were

considered without success"

°'o_,oo;<h_-,>(6))-ao<,oo>cos2(20)+ao<.o>sin2(26))+O'o<.o0>

°o_,oo (0)- °o co'-_(20t+oo_,,o>s_-(20t-+°o_,.o_

O'o_,oo_<hk,>((91--0"o<.OO>COS2(26))+O'o<S,o>sin2(2oi+ao<.o>ao<,oo>

°'o_.oo_<hk,>(61t--0"o<_OO>cos2(20)+o'0<.0>sin2(26))+O-o<.o>sin2(O)cos2(6))

0"o_,oo_<hk,> ((9)-- 0"o<,OO>COS2 (20)+ao<,,o> sin 2 (20)+.ao<_oo> sin 2 (O)cos2(O )
_o<lIO>

(143)

However, it was noted that if the degree of strength anisotropy was reduced such that ao<11o>/ao<_oo>

__0.8, solutions for _o<_oo>and G<.o> could be found.

Table 6.3.1 Scale parameters estimated from Eqs. (98), (100) and (101) for various failure criteria.

Failure Criterion

Maximum Principal

PIA

Normal Stress

Coplanar Energy Release Rate

Noncoplanar Energy Release Rate

Maximum Hoop Stress

O-o<zoo>' MPa.(mm 2)Vm

2516

2516

4038

O-o<uo>,MPa.(mm 2)Vm

1574

1574

976
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Although Eqs (100) and (101) could not be solved for the fracture mechanics based failure criteria,

the scale parameters ao<_oo>and ao<Ho>can be estimated by another approach. If the parameters

are treated as average values of the strength variation about the unit circle for a uniaxial stress state,

then the functions can be solved independently as for the PIA model. This is similar to the approach

used in Eq. (39) to calculate an average normal stress for the Weibull model. The new functions are

and

O'o<_oo>= 2 A_ zc _f (O ) dO (144)
]'C 0 _ o<100>

O"o<11o>= 2 Ae rc..... f(O) dO .

]'C 0 O'o<llO>

The scale parameters estimated from Eq. (144) and (145) are listed in Table 6.3.2.

(145)

Table 6.3.2: Scale parameters estimated from Eqs. (144) and (145) for various failure criteria.

Failure Criterion

Maximum Principal

PIA

Nmmal Stress

SIFCs Used

Coplanar Energy Release Rate

Noncoplanar Energy Release Rate

Maximum Hoop Stress

Batdorf - Griffith Crack

Batdorf - Griffith Notch

o"o<1O0>,MPa(mm 2)1/m

2516

2516

2051

2223

2265

1934

YI = 1.286

YI = 1.479

2O97

2309

2375

YI = 1.365

¥i= 1.241

2028

2175

2205

1985

2230

O"o<Ho>, MPa(mm 2)Vm

1574

1574

g1=_/z

1283

1390

1417

1210

YI = 1.286

YI = 1.479

1312

1444

1486

1242

Yi = 1.365

III = 1.241

1269

1360

1379

1395
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6.4 RELIABILITY PREDICTION FOR ANISOTROPIC

MULTIAXIAL STRESS STATES

MATERIALS"

The probability of failure and characteristic strength of a component subjected to multiaxial

stresses, such a biaxial disk test specimen, can be estimated from Eqs. (74) and (91). The

functions can be applied in the general form or a variety of simplifying assumptions can be used.

Three cases and the associated assumptions were considered in predicting the strength of the

disk test specimens from the uniaxial test data: (1) complete isotropy; (2) anisotropic elasticity

with strength isotropy; and (3) complete anisotropy. A Weibull modulus of 5.4 was used in the

analyses because it corresponded to that of the largest test population (i.e. the <110> four-point

flexure specimens) and the average value for the measured uniaxial and biaxial data. The

approximate solution of Okubu (Okubu 1949) was used to minimize the computational time.

6.4.1 Assumption of Complete Isotropy

If the material's elasticity and strength are assumed to be isotropic, then Eq. (135) applies for the

stress analysis and Eqs. (82) and (87) apply for the reliability and characteristic strength analyses.

The resulting strength predictions from the 90% confidence bands on the uniaxial data are

compared to the 90% confidence bands of the measured biaxial flexure strength data in Figure

6.4.1.1 for the various failure criteria and the SIFCs given in section 2.5.2. The computer code

used to make the estimates is given in Appendix F.

6.4.2 Assumption of Strength Isotropy

If the strength is assumed to be isotropic but the elasticity anisotropic, Eqs. (114) to (117) or

(131), (114), (116) and (117) apply for stress analysis depending on whether Okubu's

approximate or series solutions are applied. For the reliability analysis, Eqs. (82) and (87) apply.

The resulting strength predictions from the 90% confidence bands on the uniaxial data and

Okubu's approximate solution are compared to the 90% confidence bands of the measured

biaxial data in Figure 6.4.2.1 for various failure criteria and the SIFCs given in section 2.5.2. The

difference between the predictions in this section and section 6.4.1 reflect the effects of

anisotropic elasticity in the solution, which improves all the predictions except Batdorf's criterion

for a Griffith crack. The computer code used to make the estimates is given in Appendix G.
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6.4.3 Assumption of Complete Anisotropy

If complete anisotropy is assumed, Eqs. (114) to (117) or (131), (114), (116) and (117) apply for

stress analysis depending on whether Okubu's exact or approximate solutions are applied. Note

that this is the most general case and would be expected to best describe single crystal NiAI. For

reliability analysis, Eqs. (74) and (91) apply. The scale parameter is calculated from (100) and

(101) or (144) and (145). The resulting strength predictions from the 90% confidence bands on

the uniaxial data and Okubu's approximate solution are compared to the 90% confidence bands

of the measured biaxial data in Figure 6.4.3.1 for various failure criteria and the scale parameters

in Table 6.3.1 (i.e. Eq. (98). The prediction based on the scale parameters in Table 6.4.3.2 (i.e.

from Eqs. (144) and (145)) are given in Figure 6.4.3.2. The difference between the predictions in

this section and section 6.3.1 reflect the effects of anisotropic elasticity and strength in the

solution. The computer code used to make the estimates is given in Appendix H.

6. 4.4 Flaw Distribution Anisotropy

A fourth case, in which an anisotropic flaw distribution exists within an isotropic material, can be

envisioned. In such a case Eq. (135) applies for the stress analysis and Eqs. (74) and (91) apply

for the reliability and characteristic strength analyses. The strength distribution function would

have to be determined from experimental measurements of strength as a function of orientation.
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Figure 6.4.1.1" Measured and predicted characteristic strength for AFN12 single crystal NiAI. Elastic and strength

isotropy were assumed. The stress intensity factor coefficients of (a) a Griffith crack, (b) of Thiemeier et al.

(Thiemeier 1991) and (c) Smith et al. (Smith 1967) and Smith and Sorensen (Smith and Sorensen 1994) were
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energy release rate (CERR), non-coplanar energy release rate (NERR), maximum hoop stress factor (MHSF),

Batdorf's for a Griffith crack (BGC) and Batdorf's for a Griffith notch (BCN) were considered.
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Figure 6.4.3.1" Measured and predicted characteristic strength for single
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anisotropy were assumed. The stress intensity factor coefficients of (a) a Griffith crack, (b) Thiemeier et al.

(Thiemeier 1991) and (c) Smith et al. (Smith 1967) and Smith and Sorensen (Smith and Sorensen 1994) were used.

The maximum principal stress (MP), principle of independent action (PIA), normal stress (NS), coplanar energy

release rate (CERR), non-coplanar energy release rate (NERR), maximum hoop stress factor (MHSF), Batdorf's for a

Griffith crack (BGC) and Batdorf's for a Griffith notch (BCN) were considered. Equations (144) and (145) were used

for the functional form of the scale parameter.



CHAPTER 7" DISCUSSION OF THE RESULTS

7.1 DISCUSSION OF THE EXPERIMENTAL RESULTS

7.1.1 Strength and Weibull Modulus

The data in Table 5.2.2.2 and 5.4.2.1 indicate significant strength differences between the three- and

four-point flexure test configurations for both orientations, and between orientations for the same test

configuration, implying effects of scale and orientation. The data also indicates a significant strength

difference between the uniaxial strength in either the <100> or <110> and the biaxial strength.

However, significant differences could not be detected between the Weibull moduli for the three- and

four-point configurations for either orientation, or between orientations for the same configuration,

implying a statistically homogeneous flaw distribution and an independence of the Weibull modulus

on crystal orientation. Also, the Weibull modulus of the biaxial data is not statistically significantly
different from that of the uniaxial data.

The apparent independence of Weibull modulus as calculated from the MLE (Abernathy et al.

1983) on test specimen orientation can also be examined from the Gaussian statistics of the data.

The Weibull modulus of a brittle material can be estimated from Gaussian statistics by using
(Ritter et al. 1981 )

1.2

m = CV (146)

where CV is the coefficient of variation (i.e. mean divided by the standard deviation). Thus

Equation (146) and the nearly identical coefficients of variation in Table 5.2.2.1 also imply that the

Weibull modulus does not vary with orientation.

This conclusion can be examined further from an analytical standpoint by using a truncated Taylor

series expansion for estimating the statistics of a random variable thatis a function of other

independent variables (Haugen 1980), and the fracture mechanics equation
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and

11/ (147)

Kzc - S,,s"_ (148)

where SD_,is the standard deviation of the y variable, x; is the i 'h independent variable, and Kz,.is the

fracture toughness and a the crack length. Solving Equation (148) for fracture strength and

Equation (147) for standard deviation of strength leads to

I[ ][ ]}lJ SDo- SDK_c + KI_SDe_
r._ 4rra a "

Dividing Equation (149) by the expected (i.e. mean) value of strength gives

[L K_ +L 4a2

or

(149)

(150)

CVf},/_cv,.,,- cvL +4 "

For small standard deviations of crack size or a single flaw population, Equation (151) implies that

the coefficient of variation of strength, and thus the Weibull modulus, is approximated by that of

the fracture toughness. Note that the mean fracture toughness of single crystal NiAI varies with

orientation (Chang et al. 1992) but the CVs do not. To further illustrate the relationship between

CV and fracture toughness, the CVKIcfor several brittle ceramics and binary single crystal NiAI is

plotted in Figure 7.1.1.1. No strong function of CVK_ with fracture toughness, as measured with

the single-edged-precracked-beam technique (ASTM C 1421 1999, Nose and Fuji 1988), is

exhibited, implying that Weibull modulus via Equation (146) is not dependent on the fracture

toughness. The Cl4a_ is probably more a function of the material's inherent variability and the test

error than of the fracture toughness. Thus, Weibull modulus should not vary with orientation in a

material with fracture toughness anisotropy, if the same flaw population controls failure.
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Thus, the strength of single crystal NiAI is a function of test specimen orientation, test specimen

size and stress state for tensile loading. However, the Weibull modulus is not a function of test

specimen orientation, size or stress state for tensile loading. This is in agreement with the

generalized Weibull model proposed in Eq. (74).

7. 1.2 Correlation of billet Chemistry to Flexural Strength

Because C is a "tramp" element in the alloy and its presence results in strength-limiting HfC

inclusions, the strength of a given billet was speculated to correlate to the carbon content: smaller

or fewer HfC inclusions might develop for decreased carbon content. Carbon content of the billets

and an additional billet (HP252) believed to be of low carbon content (Darolia 1996) were

measured. The data is summarized in Table 7.1.2.1 and is plotted in Figure 7.1.2.1 along with

90% confidence intervals. The average strength as a function carbon content is shown in Figure

7.1.2.2. No trend is detectable and the strongest billets have similar carbon content as the weak

billets. Improvement of the NiAl's strength might be pursued by reduction of Hf.

Table 7.1.2.1" Billet chemistry (weight %) and <100> four-point flexure strength with 90%
confidence intervals.

Fracture

Ingot Ni AI Hf Ti Si C O Strength

Designation MPa

2429 66.4 29.7 2.2 1.1 0.082 0.0034 0.0044 1298 + 167

2439 66.5 30.3 2.1 1.1 0.110 0.0041 0.0047 904 + 106

2454 66.4 30.0 2.4 1.2 0.120 0.0030 0.0043 904 + 116

2461 66.7 30.0 2.1 1.1 0.120 0.0032 0.0033 915 + 161

2464 68.3 28.4 2.1 1.1 0.120 0.0030 0.0030 948 + 198

2471 69.3 26.7 3.2 1.4 0.120 0.0034 0.0046 1228 + 201

2474 66.4 30.3 2.2 1.1 0.074 0.0035 0.0050 1053 +315

HP252 66.4 30.2 2.2 1.1 0.067 0.0039 0.0043 1226 + 33
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7. 1.3 Test Specimen Preparation

Ideally, better specimen preparation is needed to minimized machining damage and maximize the

number of failures from inherent flaws. This is especially true if NiAI is to be used as a structural

component. It is recommended that lower voltages be used during EDM in order to minimize

pitting. Further, the chemical milling procedure did not eliminate EDM damage from as-machined

surface as shown in Figures and 4.1.2.1 and 5.3.1, but tended to extend the existing pits into the

material. However, elimination of EDM pits by hand sanding prior to chemical milling did

eliminated EDM related failures. Unfortunately, this is not a practical approach for manufacturing

components. A procedure such as electro-polishing might produce a smoother surface from a

pitted surface made via EDM. Also, if possible, a grinding procedure should be developed.

However, typical uniaxial grinding of ceramic materials does leave damage in the direction

transverses to the grinding direction, and may do so in NiAl's.

7.2 DISCUSSION OF THE PREDICTIONS

The predictions shown in Figures 6.4.1.1 to 6.4.3.1 imply that the normal stress criterion (NS), in

which the normal stress acting on each plane of the crystal reduces reliability, is the best choice

regardless of assumptions regarding anisotropy. Further, the best agreement occurs if the

strength associated with the strong <100> directions is ignored and strength properties associated

with the weak <110> direction are applied (see Fig. 6.4.2.1) with anisotropic stress analysis. This

implies that either the strong directions do little to enhance reliability or that a discrepancy

between the model and the data exists. Because disk data was taken from only one billet, one

source of discrepancy between the model and the disk data is billet-to-billet variation. The effect

of billet-to-billet variation can be investigated somewhat by eliminating the billets that exhibited

significantly greater strengths (numbers 2429, 2471 and 2474 in Figure 5.2.2.1 and Table 7.1.2.1)

from the flexural test data used as input into the model. The resulting predictions for elastic and

strength anisotropy are only slightly improved, as shown in Figure 7.2.1. The normal stress

criterion is the only criteria exhibiting a statistically insignificant difference between measured and

predicted strengths.
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Another aspect of statistical variation from billet-to-billet that affects the predictions is the

estimated Weibull modulus. For the largest test population (i.e. the <100> four-point flexure

specimens), the estimated Weibull modulus is between 4.3 to 6.8 with 90% confidence, in

relatively good agreement with the estimated parameter for the disk test specimens (5.3). Thus

little justification exists for varying Weibull modulus in the predictions.

Interestingly, none of the other failure theories reviewed predict as much weakening of a material

due to a second principal stress as the Weibull based theories (Giovan and Sines 1979). Another

aspect of the material behavior that may have contributed to the discrepancy between the

predictions employing strength anisotropy and the biaxial test data is the consistent failure of the

disk test specimens along the <110> planes. Such a failure pattern implies a dominance of the

<110> strength properties in biaxial stress states and an influence on the strength predictions.

Note also that in the highly stressed central region of the disk test specimens, the principal

stresses are nearly equal thereby subjecting all planes to large nearly equal normal stresses.

Although the model accounts for the stress variation, it assumes randomly distributed planar

flaws. However, based on the fractography, the actual flaws are three-dimensional inclusions.

Conceptually this implies a flaw on each crystal plane thereby allowing a higher frequency of a

large flaw dimension to intersect a highly stressed or weak direction and thereby allowing the

weak planes to dominate strength. However, because the measured uniaxial data used in the

model is a sample of the same flaw distribution on a specific plane, the effect should be taken into

account for uniaxial cases, as the state of stress does not change with test specimen size. This is

supported by the accuracy of the predictions for the uniaxial cases. Thus fault does not seem to

lie with the origins of the model, but more with the choice of flaw type.

However, for multiaxial cases, the three-dimensionality of the flaws implies that all planes at the

point of a flaw are exposed to a similar flaw size distribution and the stresses resolved on all

planes should reduce reliability. This is supported by the ability of the normal stress criterion to

predict biaxial strength and explains why the PIA and MP criteria do not. However, this does not

explain the poor results for the shear sensitive theories.
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Figure 7.2.3" Illustration of an inclusion shielding a crack from an applied,

remote shear stress.
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The poorer agreement between the data and predictions using shear sensitive criteria, and the

inability to solve for anisotropic scale parameters for shear sensitive failure criterion, may also be

explained by the nature of the flaws. Because the flaws are three-dimensional, uniaxial test data

tends to sample a cross-section of a three-dimensional flaw by way of the principal stress instead

of sampling randomly oriented planar flaws that are inclined to the uniaxial (principal stress) and

subject to shear and normal stresses. Thus the data is unrepresentative of shear induced failure,

as shown in Figure 7.2.2, and shear sensitive criteria are less applicable. Further, inclusions tend

to resist shear as they "bridge" any crack emanating from them and thereby "shield" the crack tip

as shown in Figure 7.2.3.

It might be speculated that materials with many randomly oriented planar flaws always fail from a

flaw oriented normal to the applied stress. This would be the case if all the flaws were of the

same size, however, a random size distribution results in some large flaws at significant angles to

the applied stress and thus shear can influence the sampling in uniaxial.strength testing. For

three-dimensional flaws, the off axis shear may be ineffective as compared to the principal stress.

Because the flaws are three dimensional, the failure criterion for open pores given by Babel and

Sines (Babel and Sines 1968) might appear applicable. However, the flaws causing failure are

cavities filled with HfC and therefore carry tractions. Further, the failure criterion for pores predicts

equibiaxial strengthening and should result in prediction larger than those for planar cracks.

Another aspect of the inclusions that may have resulted in the failure locations being associated

with <110> directions is residual stresses generated by an inclusion in matrix.

7.3 Residual Stresses

The HfC inclusions are well bonded to the NiAI matrix, as described above, and have different

thermal and elastic properties than the matrix. As a result, when the NiAI billets are cooled from

the heat treatment temperature, residual stresses should be developed within and around the

inclusions. The magnitude of these thermo-elastic stresses can be estimated from the models of

Selsing or Bussem and Lange (Selsing 1961, Bussem and Lange 1966) if isotropic behavior is

assumed. The reported properties of polycrystalline HfC are quite variable, with the reported

elastic modulus varying from 316 to 461 GPa. The properties of HfC are summarized in Table

7.3.1 and those of NiAI alloys in Table 1.1.1. The single crystal NiAI considered herein is heat-

treated at ~1000°C prior to cooling to room temperature, however, the lower limit for bulk creep
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deformation is considered to be ~800°C (Nathal 1999) and thus a temperature difference of 775°C

was used in the calculations. This estimate is probably high as local deformation and stress

relaxation might occur on cooling. The resultant residual stresses are summarized in Table 7.3.2

for both the polycrystalline properties of NiAI and the elastic moduli associated with specific single

crystal directions. The resultant stresses are estimated to be quite large, with the peak tensile

stress for any assumed properties occurring in the matrix at the interface. In terms of crystal

direction the peak stress are associated with the stiffest directions, this being the <110> in the

plane of the plate and the <111> in general. The residual stresses should interact with the applied

macroscopic stresses; however, determination of the exact, net resultant stresses requires

analysis of the general cases of an inclusion in a single crystal matrix.

Based on the estimated residual stresses, the location of fracture initiation seems to be most

probable at the tensile surface where on the {110} plane intersects an inclusion.

Table 7.3.1" Mechanical Properties of HfC (MCIC 1979).

Young's

Modulus, E

GPa

316 to 460

Poisson's

Ratio, v

0.17 to 0.18

Coefficient of

Thermal Expansion

x 10-6/°C

6.6 to 7.3
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Table 7.3.2" Estimated residual stresses at the interface of an HfC inclusion in an NiAI matrix.

The stresses were calculated using the data in Table 7.3.1 and Table 1.1.1, and the equations of

Selsing (Selsing 1961 ).

Matrix

Properties

Considered

Polycrystalline

<100>

<011>

<111>

NiAI Matrix

Radial Stress

/°I"

MPa

-932

-583

-929

-1162

Tangential Stress

466

291

464

581

HfC Inclusion

Radial Stress

-932

-583

-929

-1162

Tangential Stress

o"eo

MPa

-932

-583

-929

-1162

NAS A/TM_2002- 210519 147



CHAPTER 8: SUMMARY

A general methodology for analyzing the reliability of brittle single crystals was developed and

experimentally investigated. Procedures and analyses for specimen preparation, uniaxial and

multiaxial testing and failure source identification were developed in order to supply verification

data for the model. The reliability model employs the Weibull distribution and strength or fracture

mechanics based failure criteria. The results of this study can be summarized as follows:

1) A procedure for preparing the surfaces single crystal NiAI test specimens was developed.

2) The elastic moduli in the <100> and <110> directions were measured by impulse excitation.

The measured values agreed well with published values for binary NiAI.

3) The uniaxial flexure strength in three and four-point flexure were determined for <100> and

< 110> orientations.

4) A test apparatus for measuring the biaxial flexure strength of isotropic and anisotropic

materials was developed and verified. The test rig subjects a circular plate to a uniform

pressure and is capable of generating equibiaxial stresses within ~2% of theoretical

predictions for cubic single crystal NiAI.

5) The formulas for estimating the standard deviations of strain and stress from apparent strains

measured with stain gage rosettes were derived.

6) The displacement solution for an anisotropic plate subjected to uniform pressure was

generalized to the case of variable radius, pressure and thickness. The resultant curvature

functions were derived in a general format more commonly used for plate analysis.

7) The multiaxial strength of single crystal NiAI was measured for the {100} orientation.

8) A reliability model was developed for brittle materials that exhibit elastic and strength

anisotropy. The model was used to predict the characteristic strength associated with uniaxial

and biaxial stress states.
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9) An equivalent stress solution for the coplanar energy release rate of an anisotropic material

was derived.

10) The source of failure in AFN12 single crystal NiAI was identified via fractographic and energy

dispersive analyses.
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CHAPTER 9" CONCLUSIONS

(1) The source of failure in AFN12 single crystal NiAI was identified to be either machining

damage or coarse, three-dimensional HfC inclusions. Biaxial test specimens cleaved on the

{110} plane, implying a dominance of that plane in the strength of the material when subjected
to multiaxial stresses.

(2) Fracture in a biaxial stress state occurs on the {110} because of four factors: (1) the low

fracture toughness (Chang and Darolia 1992), (2) the higher residual stresses associated with

the stiff <110>, (3) the large area of {110} planes subjected to large applied stresses, and (4)

the three-dimensional shape of the inclusions.

(3) The three-dimensional flaw shape has specific implications on the measure characteristic

strength. In uniaxial stress states, the effects of off-axis shear are mitigated because the

nominal cross-section of the flaw is subjected to the principal stress regardless of orientation.

In contrast, planar flaws of random size are subjected to a mix of shear and normal stress

depending on orientation of the critical flaw. Thus, uniaxial test data does not detect the shear

sensitivity of the brittle materials failing from inclusions.

(4) The flaw shape also has implications on multiaxial failure. Because all crystal planes at the

point of a three-dimensional flaw intersect the cross-section of the flaw, the weak crystal

planes tend to dominate the failure behavior in near equibiaxial stress states. Further,

because the flaws are inclusions, they may "mechanically" resist remotely applied shear.

Thus shear-sensitive criteria are less applicable than criteria related to normal stresses.

(5) EDM machining leaves significant surface damage on test specimens. A significant amount

of this damage remains even after chemical milling. Removal of the EDM layer by sanding

with 400 grit silicon carbide paper prior to chemical milling produced acceptable surfaces on
test specimens.

(6) An effect of stressed test volume and test specimen orientation exists for AFN12 single crystal

NiAI. The effect of specimen scale on the probability of failure and characteristic strength for

uniaxial stresses can be described by the W eibull distribution.
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(7) No statistically significant difference in Weibull moduli between <110> and <100> orientations

could be detected at 90% confidence, implying that the Weibull modulus is not a function of

orientation. Analytical derivations support this conclusion.

(8) The biaxial strength of AFN12 single crystal NiAI is significantly less than that measured with

uniaxial test specimens of similar dimensions. The Weibull modulus of the biaxial test

specimens was not statistically significantly different from that of the uniaxial test specimens.

(9) The same flaw population and failure mechanism (brittle failure without macroscopic ductility)

controls failure in both uniaxial and biaxial test specimens. Cleavage in biaxial stress state

appears to initiate on the <110> plane and rapidly branch in the <310> directions.

(10) The displacement of a circular, single crystal NiAI plate subjected to a uniform pressure can be

accurately described by the solutions of Okubu (Okubu 1949). For practical purposes, the

approximate solution is adequate for the estimation of stress and strain in engineering
applications.

(11) The fractography and predictions point out the critical nature of understanding the flaw type in

modeling the brittle failure of single crystals. Inclusions interact with remote stresses differently
than planar cracks.

(12) Based on the current data, the best design approach for AFN12 single crystal NiAI components

involving multiaxial stresses is to employ anisotropic stress analysis with the normal stress

criterion and <110> strength statistics in the reliability model. Adequate results can also be

attained by using anisotropic strength and elasticity with the normal stress criterion in the

reliability model.
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CHAPTER 10" RECOMMENDATIONS AND FUTURE WORK

Based on the present analytical and empirical research, the following extension of the present
investigation recommended:

(1) Multiaxial testing of additional billets of AFN12 {100} single crystals. The addition of data from

other billets would clarify the role of billet-billet variation in the predictions.

(2) Multiaxial testing of different orientations (e.g. {110}) of single crystal NiAI in order to test

different and more general cases.

(3) Determine functions that allow a generalized scale parameter as a function of orientation to

be determined for advanced fracture mechanics criterion such as the coplanar energy release
rate.

(4) Develop an equivalent stress failure criterion for an inclusion embedded in a cubic matrix

(5) Optimization of the materials strength and Weibull modulus by using the test and

fractographic methods applied herein. Ultimately, processing refinement that eliminate

Hafnium carbides are required.

(6) Testing of miniature flexure specimen to determine of localized yield can occur prior to

fracture via brittle cleavage.

(7) Apply the model to other cases such as strength anisotropy due to machining damage

associated with uniaxial grinding.
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APPENDIX A: BIAXIAL TEST APPARATUS

A.1 DESCRIPTION OF THE TEST APPARATUS

An assembly drawing for the biaxial flexure test apparatus capable of applying a uniform pressure

to a disk test specimen is shown in Figures A.A.1 and A.A.2. Design drawings of the components

for testing a 25.4 mm disk test specimen are shown in Figures A.A.3 to A.A.6. The rig consists of

a test chamber, reaction ring and cap, capacitance extensometer 6, and oil inlet and drain ports.

The desired pressurization cycle is supplied to the test chamber and specimen via a hydraulic

actuator placed in line with a servo-hydraulic actuator connected to a closed loop controller 7. The

feedback to the controller is supplied by a commercial pressure transducer 8 connected to the oil

inlet line. Although the chamber could be pressurized manually via a hydraulic hand pump, the

use of a servo-hydraulic actuator and closed loop controller allows any load rate or load cycle to

be applied.

The test chamber and cap are 304 stainless steel, and the reaction ring is either cold rolled, half-

hard copper or an appropriate material (e.g. steel) depending on the pressures required for

specimen failure. The pressures required to fail the tungsten carbide specimen (~21 MPa)

required a steel disk. Copper, having a lower elastic modulus and being somewhat ductile, might

be used to accommodate any minor misalignments or specimen curvatures in as-processed

specimens or very compliant specimens. The hydraulic oil is contained on the compressive face

of the specimen by a nitrile O-ring 9 retained in a groove.

A 4340 steel disk test specimen design used for rig verification is shown in Figure A.A.7.

6Bentley-Nevada Corp., Minden, Nevada.

7Model 8521, Instron Corp., Canton MA.
8 Model 204, Setra Corp., Acton, MA.

9 Parker, #5-273, 70 Durometer Buna-N compound N507-70.
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Figure A.A.3" Test chamber for a biaxial test apparatus capable of applying a
uniform pressure to a 25.4 mm disk test specimen. Units are in inches for
ease of machining and minimization of cost.
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A.2 SEAL ANALYSIS

The O-ring seal is somewhat compliant and thus the pressure generated at the interface between

it and the test specimen is of interest. Because the relatively compliant seal is compressed into

the groove via the test specimen, it nominally assumes orthogonal faces as shown in Figure

A.A.8 and is constrained from movement. This is a somewhat tenuous assumption, because with

sufficient pressures the O-ring seal will be extruded out of the groove. The resulting boundary
conditions are

From Hooke's law we have

AC.1

(o,  (ox+o_))
S), --'_--

AC.2

1 (O"_ V )) AC.3S_---- -- (O'x + O'y
E

The strains are zero in equations AC.2 and AC.3, and they can be equated and solved to show

that the y and - stresses are equivalent. Setting AC.2 to zero and substituting _ for _, and the

pressure for _,. results in

or_ - . AC.4
- 1-v

Because Poisson's ratio for most elastomer materials is ~0.5, Equation AC.5 implies that the

pressure on all faces of the seal are equivalent to the hydraulic pressure within the chamber.
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X __

Reaction Ring

I
Z

Disk Test Specimen

Figure A.A.8" Cross-sectional view of the test specimen, reaction ring, O-ring
and groove.
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APPENDIX B" CODE FOR CALCULATION OF STRESSES AND STRAINS IN

ANISOTROPIC CIRCULAR PLATES SUBJECTED TO UNIFORM PRESSURE

The series constants for Okubu's solution (Okubu, 1949) and the stresses and strains at any

point in the disk test specimen were determined by a program written in the Maple V®

programming language _°. The Maple V code, which is listed below, has two main parts" that

solving a selected number of equations for the corresponding constants and that determining the

stresses and strains at a specified Cartesian location. As the crystal symmetry is orthogonal, the

elastic constants and solutions are in Cartesian form. However, as the plate is circular, stress

and strain in polar coordinates are more informative and output is given in both Cartesian and

polar systems.

The plates is assumed to be of cubic symmetry, {100} orientation and subjected to a uniform

pressure with support on the periphery. Any plate radius, thickness and pressure can be

specified, however, the solution assumes that the plate is thin and the displacements small. The

. code can be generalized to plate of orthotropic symmetry such as a plate of {110} orientation.

,# Okubu's Solution Generalized for the Case of a {001} Plate of Variable Radiu_.=

# Determination of Constants

# Displacement Equations and Curvatures

> restart: with (linalg):

> n[t]:=4;

> wc:=C 1*x^4+C2*x^2*y^2+C3*y^4+C4*x^2+C5*y^2+C6;

>w:=wc+cp^2/4*su m(A[n]*(c°sh ((2*n+2)*ap)*cos((2*n +2)*bp)/((2*n +2)*(2"n+ 1))-
(1/(2" n* (2"n+1))+ 1/(2" n* (2" n-1)))*cos h(2" n*ap)*cos (2" n*bp)+cos h((2" n-2)*ap)*cos( (2*n-
2)*bp)/((2*n- 1)*(2*n-

2))),n=2..n[t])+cpp^2/4*sum(B[n]*(cosh((2*n+2) app) cos((2 n+2) bpp)/((2 n+2) (2*n+1))-
(1/(2*n*(2*n+1))+1/(2*n*(2*n-1 )))*cosh(2*n*app)*cos(2*n*bpp) +cosh((2*n-2)*app)*cos((2*n-
2)*bpp)/((2*n-1 )*(2"n-2))), n=2.. nit]):

> dwdxx:=sum((A[n]*c_sh(2*n*ap)+B[n]*c_sh(2*n*app))*c_s(2*n*b)_n=2__n[t])+diff(wc_x$2);

10Maple V, release 5, Waterloo Maple Software, Ontario, Canada.
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>dwdyy:=-

sum((A[n]*kl ^2*cosh(2*n*ap)+B[n]*k2^2*cosh(2*n*app))*cos(2*n,b), n=2..n[t])+diff(wc, y$2);

> dwdxdy:=-sum ((A[n]*kl *sinh(2*n*ap)+B[n]*k2*sinh(2*n*app))*sin(2*n*b),n=2..n[t])+diff(wc,y,x);

> a:=ln(rp);x:=exp(a)*cos(b);y:=exp(a)*sin(b);bp:=b;bpp :=b;

> w:=combine(w,trig):

# Equation 11 Of Okubu:

> EQ 11a:=collect(sim plify(w-sum ('coeff(w,cos(2*n*b))*cos(2*n*b),,,n,= 1..n[t]+ 1)=0),rp);
> EQ11 b:=simplify(coeff(w,cos(2*b))=0);
> EQ1 lc:=simplify(coeff(w,cos(4*b))=0);
> EQ1 ld:=simplify(coeff(w,cos(6*b))=0);
> EQ11 e:=simplify(coeff(w,cos(8*b))=0);

# Moment Equation and Equation 12 of Okubu:

>Ma:=com bine((D 1+D2+(D 1-D2)*cos(2*b))*dwdxx+(D2+D3+(D2-
D3)*cos(2*b)) *dwdyy+2*D4 _-dwdxdy*sin (2*b),trig) •

> EQ12a:=collect(simplify(Ma-sum ('coeff(Ma,cos(2*n*b))*cos(2*n*b),,,n,= 1..n[t]+ 1)=0),rp);

EQ 12b:=sim plify(coeff(Ma,cos (2*b))=0):EQ 12b :=collect(EQ 12b, A[2])"EQ 12b :=collect(EQ 12b, B[2])
EQ 12b:=collect(EQ 12b, rp);

EQ12c :=sim pl ify(coeff(M a,cos (4*b))=0)"EQ 12c: =collect(EQ 12c,A[2]):EQ 12c :=collect(EQ 12c, B[2]) •
EQ12c:=collect(EQ 12c, rp);
EQ12d :=simplify(coeff(Ma,cos(6*b))=0):

# Single Crystal Elastic Constants( mA2/MN):

> $11 :=1.0428e-5;
> $22:=1.0428e-5;
> $12:=-0.421e-5;
> $44:=0.892e-5;
> bl 1:=$22/($11"$22-$12^2);
> b22:=$11/($11"$22-$12*2);
> b12:=-$12/($11"$22-$12^2);
> b66:= 1/$44;

# Plate thickness (mm), Radius (mm) and applied pressure (psig):

> rp:=l 1,568;q:=1 056"6.8947/1000;h:=1.554;

# Plate stiffness in Okubu's Notation:

> D1 :=h^3"$22/(12"($11 *$22-$12^2));
> D2:=-h^3*S12/(12*(S11-$22.$12^2));
> D3:=h^3*S11/(12"($11"$22-$12^2));
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> D4:=h^3/(6*S44);

# DEQ Constants:

> kl :=D1 ^0.5/(D2+D4+((D2+D4)^2.D1 *D3)^0.5)^0.5;
> k2:=D1 ^0.5/(D2+D4_((D2+D4)A2_D1 *D3)^0.5)^0.5;
> cp:=rp*(1 -kl ^2)^0.5;
> cpp:=rp*(1-k2^2)^0.5;
> ap:=arccosh(rp/cp);
> app:=arccosh(rp/cpp);

# Series Constants Set to Zero:

> n:='n';A[4]:=0:A[5]:=0:A[6]:=0"B[4]:=0:B[5]:=0:B[6]:=0:

# Differential Equation of Bending:

> EQ10:=3"D1 *C1+(D2+D4)*C2+3*D3*C3-q/8;

# An, Bn and Ci Terms to be Determined from Boundary Equations;

> consts:=

solve({EQ 10,EQ11 a, EQ11 b,EQ11 c,EQ12a, EQ12b, EQ12c,EQ11 d,EQ11 e,EQ12d},{C 1 C2,C3,C4,
C5, C6,A[2], B[2],A[3], g[3]});

# STRAINS AND STRESSES FOR A SPECIFIC PLATE LOCA TION"

# Cartesian Location of Interest (mm):

> x:=0.0066;
> y:=0.0067;
> t:=arctan(y/x);

# Calculation of Alpha and Beta Prime and Double Prime terms:

> k:=kl ;c:=cp;
> a:=x^2+k^2*y^2-c^2;
> b:=2*k*y*c;
> d:=xA2+kA2*y^2-c^2;

> alp :=evalf(Iog (1/(c*2^0.5)*(a+(a^2+b^2) ^0.5) ^0.5+ (1/(2*c^2)*(a+(a^2+b^2) ^0.5) + 1)^0.5));
> betp :=(arcsin (1/(c*(2^0.5))* (-d+(d^2+b^2) ^0.5) ^0.5));
> k:=k2;c:=cpp;
> a:=evalf(xA2+k^2*y^2_c^2);
> b:=2*k*y*c;
> d:=xA2+kA2*y^2-c,2;

> alpp :=evalf(Iog (1/(c'2^0.5) *(a+(aA2+b^2) ^0.5) ^0.5. (1/(2,c^2), (a+(aA2+b^2) ^0.5) + 1)^0.5));
> betpp :=(arcsin (1/(c*(2^0.5)) *(-d+(dA2+b^2)^0.5)^0.5));

# Maximum Value of Prime Terms

>alp MAX :=log( (cos (Pi/4) *(-cp^2 +(cp^4) ^0.5)^0.5)/cp+ (1+(-cp ^2 +(cp ^4)^0.5)/(2* cp ^2)) ^0.5);
>betpM_ :=arcsin ((cos(Pi/4) *(cp ^2+(cp ^4) ^0.5) ^O.5)/cp);
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>al ppMAX: =1og((cos (Pi/4) * (-cppA2+ (cpp A4)^0.5) ^0.5)/cpp. (1+(-
cpp ^2+(cppA4 )^0.5)/( 2*cpp ^2))A0.5);
>betpp MAX: =arcsi n((cos (Pi/4) *(cpp ^2+(cpp A4)^0.5)A0.5)/cpp) ;

# Cartesian MicroStrains:

>el 1:=Re(-

h/2*(A[2]*cosh (4*alp)*cos(4*betp)+A[3]*cosh (6*alp)*cos(6*betp)+B[3]*cosh (6*Re(alpp))*cos(6*lm(
alpp))*cos(6*betpp) + B[2]*cosh (4*Re(alpp))*cos(4* Im(alpp))*cos(4*betpp) +12"C1 *x^2+2*C2*y^2+
2"C4));

>e22:= Re(-h/2*(-k 1^2*A[2]*cosh (4*alp)*cos (4*betp)-k 1^2*A[3]*cosh (6*alp)*cos(6*betp).
k2A2*B[2]*cosh (4*Re(alpp)) *cos(4*lm (alpp)) *cos(4 *betpp)-

k2^2" B[3]*c°sh (6"Re (alpp))*cos(6* Im (alpp))*cos (6*betpp) +2"C2"xA2+ 12"C3"y^2+2"C5));

>el 2:=Re(-h*(-k 1*A[2]*sinh (4*alp)*sin (4*betp)-k 1*A[3]*sinh (6*alp)*sin(6*betp)-
k2* B[2]*si nh(4*Re (aIpp))*cos (4" Im(alpp))*s in(4"bet pp)-
k2*B[3]*sinh (6*Re(alpp))*cos(6*lm (alpp))*sin (6*betpp) +4*C2*x*y));

e11 :=evalf(Re(subs(consts,e 11))) ;e22 :=evalf(Re(subs(consts,e22)));e 12:=evalf(Re(subs(consts,e
12)));

> eMAX:=Re(-

h/2*(A[2]*co sh(4"alp MAX) *cos (4*betp MAX) +B[2]*cos h(4" Re (aIppMAX)) *cos (4" Im (alppMAX) )*cos
(4*betppMAX)+2*C4));

> eMAX:=evalf(Re(subs(consts,eMAX)));

# Cartesian Stresses (MPa):

> Sigl 1 :=evalf(bl 1"el 1+b12*e22);
> Sig22:=evalf(b12"el 1+b22*e22);
> Sig12:=evalf(b66*e12);
> SigMax:=bl 1*eMAX+bl 2*eMAX;

# Polar MicroStrains and Stresses (MPa):

> Sigrr:=Sigl 1*cos(t)^2+Sig22*sin(t)^2+Sig 12*sin(2*t);
> err:=el 1*cos(t)^2+e22*sin(t)^2+e12*sin(2*t);
> err:=el 1*cos(t)^2+e22*sin(t)A2+e 12*sin(2*t);
> ett:=e22*cos(t)^2+e11 *sin(t)A2-el 2*sin(2*t);
> ert:=(e22-e11 )*sin(t)*cos(t)+el 2*cos(2*t);
> tt:=evalf(t*180/Pi);
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APPENDIX C" UNIAXIAL TEST SPECIMEN DATA

The following tables give detailed uniaxial test specimen dimensions, failure loads and the

calculated strengths based on ASTM C1161 (ASTM C 1161 1990).

Table A.C. 1 - <100> three-point flexure test specimen dimensions and failure loads.

Average Average Effective

Billet Specimen Width 1 Width 2 Width 3 Height 1 Height 2 Height 3 Width Height Load Strength Area
Number Number mm mm mm mm mm mm mm mm N MPa mm2

x

3.862 3.858
x

2461 3fx2 3.816 2.797 2.775 2.723 3.845 2.765 1005 1016 21

2429 3fxlt 3.824 3.821 2.747 2.745 2.721 3.827 2.738 770 1622 21

<100> 3fx2t 3.746 3.763 2.761 2.771 2.763 3.762 2.765 608 1277 21

3fx3b 3.798 3.804 2.767 2.76 2.736 3.804 2.754 827 1732 21

3.836

3.777

3.811

3.876

3.837

3.853

3.832

3.827

3.829

3.849

3.799

3.844

2454 3fxlt 3.864 3.866 2.876 2.851 2.807 3.869 2.845 601 1162 21

<100> 3fx2b 3.865 3.788 2.829 2.84 2.835 3.830 2.835 623 1224 21

3fx3b 3.83 3.861 2.845 2.867 2.842 3.848 2.851 760 1469 21

2464 3fxl 3.854 3.799 2.791 2.798 2.799 3.828 2.796 578 1168 21

<100> 3fx2 3.817 3.829 2.801 2.835 2.84 3.824 2.825 623.6 1235 21

21
2471 3fxlt 3.745 3.852 2.808 2.874 2.883 3.809 2.855 694.9 1353 21

2474 3fxlt 3.848 3.839 2.825 2.842 2.845 3.845 2.837 498.9 975 21

<100> 3fx2b 3.796 3.788 2.799 2.828 2.836 3.794 2.821 568.3 1139 21

3fx3b 3.81 3.878 2.818 2.818 2.795 3.844 2.810 633.8 1262 21

2439 3fxlt 3.776 2.755 543.7 1148 21

<100> 3fx2b 3.729 3.754 3.786 2.815 2.834 2.832 3.756 2.827 560.2 1129 21
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Table A.C.2 - <100> four-point flexure test specimen dimensions and failure loads.

Billet # Specimen Width 1 Width 2

Number Number mm mm

x x

2461 4fxl 3.922 3.922 3.907 2.901

<001 > 4fx2 3.937 3.94 3.93 2.908

4fx3 3.926 3.892 3.835 2.936

4fx4 3,855 3.854 3.824 2.894

3fx2 3.862 3.858 3.816 2.797

Average Average

Width 3 Height 1 Height 2 Height 3 Width Height Load Strength

mm mm mm mm mm mm N MPa

2429 4fx3b 3.636 3.699 3.735 2,713

<001 > 4fxlt 3.771 3.779 3.766 2.708

4fx2t 3.727 3.735 3.704 2.71

4fx4b 3.704 3.748 3.747 2.698

2353 4fxlt 3.569 3.593 3.567 2.74

<100> 4fx2t 3.788 3.75 3.722 2.839

4fx3b 3.991 4.049 4.09 2.747

4fx4b 3.493 3.465 3.412 2.636

2454 4fxlt 3.879 3.883 3.876 2.85

<100> 4fx2t 3.814 3.836 3.836 2.681

4fx3b 3.805 3.834 3.851 2.826

4fx4b 3.818 3.833 3.838 2.819

2464 4fxl 3.786 3.792 3.799 2.81

<100> 4fx2 3.815 3.834 3.85 2.811

4fx3 3,738 3.742 3.724 2.827

4fx4 3.859 3.848 3.83 2.801

2471 4fxlt 3.882 3.86 3.85 2.858

<100> 4fx2t 3.944 3.939 3.915 3.023

4fx4b 3.7 3.758 3.807 2.834

2474 4fxlt 3.81 3.826 3.819 2.855

<100> 4fx2t 3.873 3.87 3.84 2.816

4fx3b 3.749 3.77 3.794 2.788

4fx4b 3.811 3.794 3.762 2.707

2439 4fxlt 3.85 3.855 3.833 2.864

<100;, 4fx2t 3.755 3.766 3.784 2.755

4fx3b 3.789 3.794 3.775 2.736

4fx4b 3.857 3.869 3.877 2.802

Effectiw

Area

mm2

2.914 2.915 3.917 2.910 860 771 101

2.902 2.873 3.936 2.894 776 700 102

2.921 2.889 3.884 2.915 1203 1082 100

2.935 2.952 3.844 2.927 1117 1008 100

2.775 2.723 3.845 2.765 1005 1016 99

2.726 2.7 3.690 2.713 1273 1392 95

2.769 2.766 3.772 2.748 1207 1259 97

2.758 2.737 3.722 2.735 1306 1393 95

2.722 2. 686 3.733 2. 702 998 1088 95

2.75 2.738 3.576 2.743 784 880 92

2.842 2.836 3.753 2.839 1032 1030 96

2.776 2.787 4.043 2.770 903 879 103

2.59 2.53 3.457 2.585 702 919 89

2.859 2.846 3.879 2.852 926.7 887 99

2.689 2.649 3.829 2.673 761 841 98

2.837 2.824 3.830 2.829 852.5 840 98

2.825 2.812 3.830 2.819 1057 1049 98

2.812 2.802 3.792 2.808 893 902 97

2.819 2.797 3.633 2.809 764 764 98

2.827 2.804 3.735 2.819 941 958 96

2.829 2.847 3.846 2.826 1189 1169 99

2.862 2.873 3.864 2.864 1378 1312

2.996 2.982 3.933 3.000 1503 1281

2.858 2.860 3.755 2.851 1103 1091

99

101

97

2.854 2.822 3.818 2.844 1390 1359 98

2.849 2.874 3.861 2.846 933.8 902 99

2.815 2.836 3.771 2.813 1171 1185 97

2.766 2.756 3.789 2.743 725 769 97

2.855 2.832 3.846 2.850 883 854 99

2.791 2.803 3.768 2.783 780.8 808 97

2.736 2.728 3.786 2.733 944.5 1008 97

2.825 2.822 3.868 2.816 962.4 947 99
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Table A.C.3 - <110> three-point flexure test specimen dimensions and failure loads.

Billet Specimen Width 1
Number Number mm

x

2492 3fxl 3.734

<110> 3fx2 3.627

2490 3fxl 3.789

<110> 3fx2 3.748

2496 3fx2 3.802

<110> 3fx3 3.873

2518 3fxl 3.783

<11O> 3fx2 3.737

2519 3fxl 3.709

<110> 3fx3 3.714

2493 3fxl 3.74
<110> 3fx2 3.638

Width 2 Width 3 Height 1 Height 2 Height 3
mm mm mm mm mm

x

3.725 3.706 2.742 2.756 2.753

3.643 3.663 2.701 2.695 2.667

3.803 3.811 2.795 2.788 2.772

3.779 3.776 2.751 2.762 2.753

3.801 3.774 2.804 2.811 2.81

3.866 3.858 2.767 2.715 2.752

3.784 3.771 2.808 2.803 2.775

3.754 3.803 2.788 2.819 2.637

3.709 3.709 2.78 2.771 2.741

3.754 3.766 2.792 2.754 2.707

3.695 3.65 2.808 2.78 2.735

3.676 3.684 2.75 2.753 2.752

Average Average Failure Effective

Width Height Load Strength Area

mm mm N MPa mm2

3.722 2.750 338 727 20

3.644 2.688 317 731 20

3.801 2.785 427 877 21

3.768 2.755 499 1057 21

3.792 2.808 251.2 21

3.706 2.745 356.1 773 20

3.779 2.795 237.4 21

3.765 2.815 236.6 482 21

Failure
Source

HfC

HfC

HfC

HfC

EDM

HfC

EDM

HfC

3.709 2.764 434.7 929 20 HfC

3.745 2.751 361.3 773 20 HfC

3.695 2.774 178 20 EDM

3.666 2.752 254.4 557 20 HfC
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Table A.C.4 - <110> four-point flexure test specimen dimensions and failure loads.

Average Average Failure
Billet Specimen Width 1 Width 2 Width 3 Height 1 Height2 Height 3 Width Height Load Strength

Number Number mm mm mm mm mm mm mm mm N MPa
x x

2492 4fxl 3.868 3.872 3.874 2.849 2.855 2.841 3.871 2.848 391.8 372

<110> 4fx2 3.891 3.886 3.881 2.891 2.9 2.88 3.886 2.890 310.1 285
4fx3 3.732 3.751 3.742 2.839 2.826 2.804 3.742 2.823 519.5 527

4fx4 3.742 3.761 3.768 2.775 2.77 2.735 3.757 2.760 418.6 443

2486 4fx2 3.873 3.884 3.886 2.802 2.819 2.836 3.881 2.819 351.3 345
<110> 4fx4 3.861 3.852 3.804 2.746 2.76 2.752 3.839 2.753 420.3 438

2490 extra 3.834 3.775 3.803 2.705 2.701 2.661 3.804 2.689 464.6 511

<110> 4fx4 3.839 3.847 3.819 2.783 2.809 2.813 3.835 2.802 406.7 409
4fxl 3.824 3.836 3.843 2.801 2.812 2.795 3.834 2.803 729.1 732

4fx2 3.734 3.735 3.725 2.708 2.704 2.682 3.731 2.698 639.3 712
CN1 3.712 3.746 3.74 2.777 2.775 2.766 3.733 2.773 191.7 204

2496 4fx2 3.776 3.811 3.839 2.907 2.909 2.887 3.809 2.901 334.5 316

<110> 4fx3 3.833 3.842 3.831 2.831 2.866 2.881 3.835 2.859 365.9 354
4fx4 3.853 3.859 3.857 2.878 2.884 2.883 3.856 2.882 420.9 398

2518 4fxl 3.757 3.778 3.795 2.816 2.823 2.807 3.777 2.815 336.0 340

<110> 4fx2 3.825 3.831 3.842 2.736 2.721 2.709 3.833 2.722 322.8 345
4fx3 3.705 3.694 3.645 2.77 2.732 2.677 3.681 2.726 339.7 376

4fx4 3.695 3.712 3.728 2.818 2.822 2.815 3.712 2.818 415.9 427

2506 4fxl 3.647 3.647 3.599 2.733 2.781 2.814 3.631 2.776 404.4 438
<110> 4fx4 3.76 3.745 3.741 2.856 2.831 2.782 3.749 2.823 358.1 363

4fx2 3.635 3.636 3.643 2.66 2.71 2.737 3.638 2.702 426.9 487
4fx3 3.656 3.644 3.576 2.821 2.808 2.766 3.625 2.798 567.9 605

2516 4fxl 3.791 3.734 3.654 2.759 2.712 2.674 3.726 2.715 404.9 447

<110> 4fx2 3.67 3.646 3.612 2.72 2.752 2.776 3.643 2.749 404.6 445

4fx3 3.803 3.779 3.737 2.821 2.836 2.847 3.773 2.835 373.4 373
4fx4 3.746 3.724 3.714 2.787 2.763 2.746 3.728 2.765 295.9 315

2519 4fxl 3.667 3.685 3.704 2.787 2.711 2.62 3.685 2.706 634.9 711
<110> 4fx3 3.626 3.627 3.622 2.728 2.687 2.63 3.625 2.682 665.6 772

4fx4 3.586 3.617 3.619 2.651 2.694 2.726 3.607 2.690 667.8 773

4fx2 3.68 3.711 3.72 2.742 2.746 2.741 3.704 2.743 745.0 808

2484 4fx3 3.747 3.763 3.777 2.784 2.776 2.744 3.762 2.768 637.4 669
<110> 4fx4 3.684 3.687 3.695 2.758 2.746 2.731 3.689 2.745 630.7 686

2493 4fxl 3.832 3.821 3.801 2.809 2.833 2.847 3.818 2.830 632.4 625

<110> 4fx2 3.787 3.785 3.786 2.797 2.831 2.847 3.786 2.825 184.5 186
4fx3 3.797 3.803 3.796 2.852 2.836 2.794 3.799 2.827 267.5 268

Effective
Area

mm2

105
105

101
101

105

103

102
103

103
101

101

103
104

104

102
103

100
101

99

102
98

98

101
99

102

101

100
98

98
100

I O2

100

103
102

103

Failure
Source

EDM

EDM
HfC

EDM

EDM
HfC

HfC

EDM
HfC

HfC
EDM

EDM

EDM
EDM

EDM

EDM
EDM

HfC

EDM
EDM

EDM
HfC

EDM

HfC
EDM

EDM

HfC

HfC
HfC

HfC

HfC
HfC

HfC
EDM

EDM
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APPENDIX D: BIAXIAL TEST SPECIMEN DATA

The following tables give detailed biaxial test specimen dimensions, failure pressures and the

calculated strengths based on Okubu's (Okubu 1949) approximate and series solutions.

Table A.D.1 - Biaxial disk test specimen dimensions and failure pressures.

Test Thickness Thickness Thickness Thickness Thickness Average Diameter Diameter Disk Support Applied
Specimen 1 2 3 4 Center Thickness 1 2 Average Radius Pressure

ID Diameter

mmmm mm mm mm mm mm mm mm mm MPa

B4 1.541 1.558 1.546 1.555 1.548 1.550 25.318 25.318 11.568 4.92

B5 1.548 1.552 1.544 1.547 1.544 1.547 25.303 25.308 25.306 11.568 8.40

B6 1.499 1.476 1.455 1.514 1.486 1.486 25.307 25.301 25.304 11.568 4.13
B7 1.555 1.549 1.563 1.552 1.549 1.554 25.292 25.292 25.292 11.568 7.28

B8 1.539 1.547 1.549 1.552 1.542 1.546 25.278 25.290 25.284 11.685 7.31
B9 1.549 1.544 1.539 1.552 1.539 1.545 24.303 25.288 24.796 11.777 7.29

B10 1.529 1.542 1.542 1.544 1.534 1.538 25.296 25.293 25.295 11.568 9.33

B11 1.544 1.539 1.534 1.542 1.539 1.540 25.277 25.266 25.272 11.568 6.59
B12 1.265 1.273 1.270 1.268 1.265 1.268 25.077 25.008 25.043 11.568 4.83

B13 1.499 1.511 1.488 1.529 1.509 1.507 25.304 25.328 25.316 11.568 5.32
B14 1.448 1.435 1.443 1.430 1.448 1.441 25.243 25.211 25.227 11.568 3.65

e3 1.440 1.448 1.453 1.435 1.445 1.444 25.222 25.228 25.225 11.568 7.00

e4 1.438 1.425 1.422 1.440 1.430 1.431 25.207 25.210 25.209 11.568 6.03

Average 1.492 25.222 11.593

Standard Deviation 0.081 0.148 0.064
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Table A.D.2 - Biaxial disk test specimen dimensions and failure pressures.

Test

Specimen
ID D* C*

Lateral Correction:

Displacement Maximum Approximate Series Approximate Series
w micro Solution Solution Solution Solution

Strain Stress Stress Stress Stress

mm MPa MPa MPa MPa

B4 47611 5.30

B5 47372 5.30
B6* 41976 5.30
B7 47981 5.3O

B8* 47266 5.30
B9* 47170 5.30

B10* 46572 5.30
B11" 46708 5.30
B12* 26084 5.30

B13" 43813 5.30
B14" 38261 5.30

e3* 38547 5.30
e4* 37496 5.30

Average
Standard Deviation

90% Confidence Interval

0.154 2113 339.7 311.8 343.4 315.5
0.263 3618 581.8 534.3 588.1 540.6

0.146 1929 310.3 284.9 313.4 288.0
0.225 3107 499.8 458.6 505.2 464.1

0.239 3214 517.0 474.7 522.4 480.2
0.247 3264 524.8 481.8 530.3 487.3

0.297 4061 653.1 601.3 660.1 608.3
0.209 2862 460.3 422.6 465.2 427.5
0.275 3095 497.8 457.1 501.4 460.7

0.180 2412 387.9 356.4 391.9 360.4
0.142 1811 291.2 267.2 294.0 269.9

0.269 3456 555.8 510.6 561.0 515.8
0.239 3033 487.8 447.8 492.3 452.3

470 431 477 439
109 100 111 102

54 49 55 50
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APPENDIX E" CODE FOR ESTIMATION OF THE SCALE PARAMETER OF

ANISOTROPIC MATERIALS

In order to estimate the characteristic strength of disk test specimens exhibiting elastic and

strength anisotropy, the scale parameter function must be estimated from uniaxial test data. The

following program, which is written in the Mathematica ® programming language TM, estimates the

constant for the scale parameter function given in Equation (98). The normal stress criterion is

used.

ESTIMATION OF SCALE PARAMETER CONSTANTS FOR NiAI SINGLE CRYSTAL.
NORMAL STRESS CRITERION.

(* INPUT WEIBULL MODULUS *)

(* INPUT <100> AND <110> 4-POINT FLEXURE EFFECTIVE AREAS (mm):*)

m=5.5

Ae 100=97.6
Ae 110=94

(* DEFINE SCALE PARAMETER SHAPE FUNCTIONS AND CONSTANTS TO BE SOLVED
(Equations 128 and 129) *)

scaleparameter 100=(AA*Cos[2 *t]^2+B B *S in[2 *t]^2)

scaleparameterl 10=(AA*Cos[2*(t+Pi/4)]A2+BB*Sin[2*(t+Pi/4)]^2)

(* CHARACTERISTIC STRENGTH INTEGRATIONS RELATING SCALE PARAMETER FUNCTION

TO MEASURED CHARACTERISTIC STRENGTH BY AREA INTEGRATION ( Equations 130 and
131). INPUT CHARACTERISTIC STRENGTHS ARE NORMALIZED TO THAT OF THE <100> FOR
COMPUTATIONAL EFFICIENCY. *)

EQ 100=2*NIntegrate [Ae 100/Pi*(Cos [t] ^2/scaleparameter 100)Am, {t,0,Pi/2 }]

EQ 110=2*NIntegrate [Ae 110/Pi*(0.6298,Cos [t] ^2/scaleparameter 110)Am, {t,0,Pi/2 }]

FindRoot [Print[InputForm[ {AA,BB,EQ 100,EQ 110 }]]; {1.0==EQ 100,1.0==EQ 110 }, {
AA,{ 3.4,3.8 } },{BB,{0.7,1 } },MaxIterations->150]

"Di git sOfAccuracy==Accuracy [ % ]

11Mathematica 3.0, Wolfram Research, Champaign, Illinois.
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APPENDIX F" CODE FOR ESTIMATION OF THE CHARACTERISTIC

STRENGTH OF ISOTROPIC DISK TEST SPECIMENS

The characteristic strength of isotropic disk test specimens (e.g. tungsten carbide) can be

determined from uniaxial test data and the following program, which is written in the

Mathematica ® Programming Language _2. The Mathematica code has two main parts" that

solving for the scale parameters associated with various failure criteria and that determining the

characteristic strength of the disk test specimens.

The material is assumed to be isotropic. The disk test specimen is assumed to be subjected to a

uniform pressure within a circular support of diameter less than or equal to that of the disk

periphery. Any plate radius, thickness and pressure can be specified, however, the solution

assumes that the plate is thin and the displacements small. The code was used to calculate the

characteristic strengths of the tungsten carbide specimens and the NiAI specimens with the

assumptions of elastic and strength isotropy.

ESTIMATION OF THE CHARACTERISTIC STRENGTH OF ISOTROPIC DISK TEST

SPECIMENS

,(* ESTIMATION OF SCALE PARAMETER *)

(* INPUT <110> 4-POINT FLEXURE DATA (MPa):*)

m=5.5;

CS=689;

(* MEAN EFFECTIVE AREA OF THE TESTED BEAMS (mm):*)

AePIA = 94;

(* STRESS INTENSITY FACTOR COEFHCIENTS:*)

Y1=1.365;
Y2= 1.241;

(* TRIGONOMETRIC FUNCTION FOR UNIT CIRCLE INTEGRATION:*)

12Mathematica 3.0, Wolfram Research, Champaign, Illinois.
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fthetaPIA=l;
fihetanormal=Cos[t]A2;
fthetacoplanar=(Cos[t]A4+0.25*y2A2/y1A2*Sin[2*t]A2)A0.5;
fihetaNoncop=(

COS[t]A8+I.5*y2A2fy1A2*Cos[t]A4*Sin[2,t]A2+
Y2A4/y1A4/16"Sin[2*t]A4)A0.25;

fihetaHoop=
8A(-0.5)*y2A3*
Sin[2*t]A3*(

2*C°s[t]̂ 2+6*(Cos[t]̂ 4+2*Sin[2*t]A2*y2A2/y1A2)A0.5)/(
Y1̂ 2*Cos[t]A4+3*y2A2*Sin[2*t]A2_
Y1*Cos[t]A2*(Y1̂ 2*CosIt]A4+2*y2A2*Sin[2*t]A2)A0.5)A1.5;

(*ESTIMATIONOFSCALEPARAMETER*)

SPpia=CS*(Nlntegrate[AePIA/Pi,(fthetaPiA)Am,{t,0,Pi},Method->Trapezoidal])^(
l/m)

SPnormal=CS*(
Nlntegrate[AePIA_i*(fihetanormal)Am,{t,0,Pi},Method->Trapezoidal])^(
l/m)

SPcoplanar=
CS*(Nlntegrate[AePIA/Pi*(fthetacoplanar)Am,{t,0,Pi},Method->Trapezoidal])A(

l/m)
. SPnoncop=CS*(

Nlntegrate [AePIA/Pi*(fthetaNoncop)Am, {t,0,Pi },Method->Trapezoidal])A(
l/m)

SPhoop=CS*(

2*Nlmegrate [AePIA/Pi*(fthetaHoop)Am, {t,0.0001 ,Pi/2 },
Method->Trapezoidal])A(1/m)

DigitsOfAccuracy=Accuracy[%]

(* ESTIMATION OF CHARACTERISTIC STRENGTH OF DISK TEST SPECIMENS *)

(* MEAN DISK DIMENSIONS (ram): *)

Rs=11.592;

Rd=25.229/2;
v=0.31;
h = 1.495;

(* DISK STRESSES WITH LATERAL CORRECTION TERM OF TIMOSHENKO: *)
(* TO IGNORE CORRECTION TERM, SET THICKNESS h TO 0: *)

• A A • A ASigl=(1-v)*RsA2/RdA2+2*(l+v)-(l+3*v) r 2/Rs 2+2/3 h 2/Rs 2*(3+v)/(1-v);
,_A A ,_ A A ,_Sig2=(1-v)*RsA2/RdA2+2*(l+v)_(3+v) r 2/Rs 2+2/3 h 2/Rs 2 (3+v)/(1-v);

SigMax=(I-v)*RsA2/RdA2+2,(l+v)+2/3,hA2/RsA2,(3+v)/(l_v);

(* CALCULATION OF CHARACTERISTIC STRENGTH OF DISK (MPa): *)

(* MAXIMUM PRINCIPAL STRESS: *)
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flpia=l;

f2pia=l;

cspressdiskmaxprin=

SPpia*(2*Nlntegrate[

Nlntegrate [r*((Sig 1*fl pia/SigMax)^m), { t,0,Pi }], { r,0,Rs }])6(- 1/m)

(* PIA: *)

cspressdiskpia=

SPp ia* (2 *Nlnte grate [

r*Pi*((Sig 1*fl pia/SigMax)^m+(Sig2*f2pia/SigMax)Am) ' {r,0,Rs }])^(- 1/
m)

(* NORMAL STRESS CRITERION: *)

flnor=Cos[t]62;

f2nor=Sin[t]^2;

cspressdisknormal=
SPnormal*(

2*NIntegrate[

Nlntegrate [r*((Sig 1*fl nor/SigMax+Sig2*f2nor/SigMax)Am), {t,0,Pi }], {
r,0,Rs }])^(- l/m)

(* COPLANAR ENERGY RELEASE RATE: *)

flnor=Cos[t]^2;

f2nor=Sin[t]^2;

cspressdiskcoplanar=
SPcoplanar*(

2*NIntegrate[
Nlntegrate[

r*((((Sigl *Cos[t]A2+Sig2*Sin[t]^2)^2+

y2A2/y 1^2/4 *(S ig 1-S ig2) 62 *S in[2 *t]62)^0.5)/
SigMax)Am, {t,0,Pi }], {r,0,Rs }])6(_ l/m)

(* NONCOPLANAR ENERGY RELEASE RATE: *)

SigN=Sig1*Cos[t]A2+Sig2*Sin[t]62;
SigS=( Sig i -S ig2)/2 *S in[ 2 *t];

cspressdisknoncop=
SPnoncop*(

2*NIntegrate[
NIntegrate[

* A * A A * A * A A A * A Ar ((SigN 4+6 Y2 2/Y1 2 SigN 2 SigS 2+Y2 4/Y1 4 SigS 4) 0.25/
SigMax)^m, {t,0,Pi }], {r,0,Rs }])6(_ l/m)
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(*HOOPSTRESSFACTOR:*)

cspressdisHoop=
SPhoop*(2*

NIntegrate[
NIntegrate[
2*r*((8̂ 0"5*(2"SigN+6*(SigN62+8*Y2^2/Y1̂ 2*SigŜ2)^0.5),Y23̂•

SigS^3/(
Y1̂ 2*SigN^2+12,Y2^2,SigS62_
YI*SigN*(

Y1̂ 2"SigN62+8*Y262*SigŜ2)60.5)^1.5)/
SigMax)^m,{t,0.005,0.99*Pi/2}],{r,0.05,Rs}])6(-1/m)
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APPENDIX G" CODE FOR ESTIMATION OF THE CHARACTERISTIC

STRENGTH OF ELASTICALLY ANISOTROPIC DISK TEST SPECIMENS

The characteristic strength of disk test specimens exhibiting elastic anisotropy and strength

isotropy can be determined from uniaxial test data and the following program, which is written in

the Mathematica® Programming Language _3. The Mathematica code has two main parts that

solving for the scale parameters associated with various failure criteria and that determining the

characteristic strength of the disk test specimens.

The disk test specimen is subjected to a uniform pressure within a circular support of diameter

less than or equal to that of the disk periphery. Any plate radius, thickness and pressure can be

specified, however, the solution assumes that the plate is thin and the displacements small. The

code was used to calculate the characteristic strengths of the NiAI specimens with the

assumptions of elastic anisotropy and strength isotropy (i.e. section 5.3.2).

ESTIMATION OF THE CHARACTERISTIC STRENGTH OF DISK TEST SPECIMEN,_ °

ASSUMING ELASTIC ANISOTROPY AND STRENGTH ISOTROPY

(* ESTIMATION OF SCALE PARAMETER *)

(* INPUT <110> 4-POINT FLEXURE DATA (MPa):*)

m=5.5;

CS=689;

(* MEAN EFFECTIVE AREA OF THE TESTED BEAMS:*)

AePIA = 94;

(* STRESS INTENSITY FACTOR COEFFICIENTS:*)

Y1=1.365;

Y2=1.241;

(* TRIGONOMETRIC FUNCTION FOR UNIT CIRCLE INTEGRATION:*)

fihetaPIA=l;

fihetanormal=Cos[t]^2;

fihetacoplanar=(Cos [t] ^4+0.25"Y2 ^2/Y 1A2*Sin[2*t] ^2)^0.5;

13Mathematica 3.0, Wolfram Research, Champaign, Illinois.
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fthetaNoncop=(
Cos[t]̂ 8+1.5*Y2^2/Y1̂ 2*Cos[t]^4*Sin[2*t]̂2+
Y2̂ 4/Y1̂ 4/16"Sin[2*t]^4)^0.25;

fthetaHoop=
8^(-0.5)*Y2^3,
Sin[2*t]^3*(

2*C°s[t]^2+6*(Cos[t]A4+2*Sin[2*t]^2*Y2^2/Y1̂ 2)^0.5)/(
Y1A2*Cos[t]̂ 4+3*Y2^2*Sin[2,t]A2_
Y1*Cos[t]A2*(Y1̂ 2*Cos[t]A4+2*y2A2,Sin[2,t]^2)^0.5)1̂.5;

(* SCALEPARAMETERESTIMATION*)

SPpia=CS*(Nlntegrate[AePIA/Pi*(fthetaPIA)Am,{t,0,Pi},Method->Trapezoidal])^(
l/m)

SPnor=CS*(

Nlntegrate [AePIA/Pi*(fthetanormal)Am, {t,0,Pi },Method->Trapezoidal])^(
l/m)

SPcoplanar=

CS*(Nlntegrate [AePIA/Pi*(fthetacoplanar)Am, {t,0,Pi },Method->Trapezoidal])^(
l/m)

SPnoncop=CS*(

Nlntegrate [AePIA/Pi*(fthetaNoncop)Am, {t,0,Pi },Method->Trapezoidal])^(
I/m)

SPhoop=CS*(

2*Nlntegrate [AePIA/Pi*(fthetaHoop)Am, {t,0.0001 ,Pi/2 },
Method->Trapezoidal])^(1/m)

(* ESTIMATION OF CHARACTERISTIC STRENGTH OF DISK TEST SPECIMENS *)

(* DISK DIMENSIONS *)

Rs=l 1.592;
Rd=25.229/2;

v=0.31;
h = 1.495;

(* DISK STRESSES FROM OKUBU'S APPROXIMATE SOLUTION*)

S11=1.0428"10^-5;

$22=1.0428"10^-5;
S 12=-0.421 *10^-5;

$44=0.892" 10^-5;

b 11=$22/(S 11"$22-S 12^2);

b22=S 11/(S 11"$22-S 12^2);
b 12=-S 12/(S 11"$22-S 12^2);
b66=1/$44;

(* Plate stiffness in Okubu's Notation: *)
D 1=h^3"$22/(12"(S 11 *$22-S 12^2));

D2=h^3*(-S 12)/(12"(S 11 *$22-S 12^2));
D3=h^3*S 11/(12"(S 11 *$22-S 12^2));
D4=h^3/(6*S44);

DD=(3 *D 1+2" D2+2*D4+3 *D3)/8;
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k=(7*D1+10*D2+6*D4+7*D3)/(2,(D1+2,D2+D3));
x=(r^2/(1+Tan[t]^2))^0.5;
y=x*Tan[t];
a=Rs;
(* CartesianStrains:*)
e11=h/2*(2*a^2*(k+1)-12*x^2-4*yA2)/(64*DD);
e22=h/2*(2*a^2*(k+1)-12*yA2-4*xA2)/(64*DD);
e6=-h*x*y/(8*DD);
(*CartesianStress:*)
Sigl1=b11*e11+b12"e22;
Sig22=b12*e11+b22*e22;
Sig12=b66*e6;
(*PrincipalStress:*)
Sig2=Sigl1*Cos[t]A2+Sig22*Sin[t]^2+Sigl2,Sin[2,t];
Sigl=Sig22*Cos[t]A2+Sigl1*Sin[t]^2-Sigl2*Sin[2*t];
Shear=(Sig22-Sigl1)*Sin[t]*Cos[t]+Sigl2*Cos[2*t]
SigMax=h*a^2*(k+1)/(64*DD)*(b11+b12);
(*NormalandShearStresses:*)
SigN=Sig1*Cos[t1]^2+Sig2*Sin[t1]^2;
SigS=(Sig1-Sig2)/2*Sin[2*t1];

(*CALCULATIONOFCHARACTERISTICSTRENGTHOFDISK(MPa):*)

(*MAXIMUMPRINCIPALSTRESS:*)

flpia=l;
f2pia=l;

cspressdiskMP=(
Nlntegrate[
Nlntegrate[r*((Sig1*flpia/(SPpia,SigMax))Am),{r,0,Rs}],{t,0,
2*Pi}])^(-I/m)

cspressdiskpia=(
I

Nlntegrate[
Nlntegrate[

r*((Sig 1*fl pia/(SPpia* SigMax))^

m+(S ig2*f2pia/(SPpia*S igMax))Am), {r,0,Rs }], {t,0,
2*Pi}])A(-1/m)

(* NORMAL STRESS CRITERION: *)

flnor=-Cos[tl ]^2;
f2nor=-Sin[tl ]^2;

cspressdisknormal=(
Nlntegrate[

8*Nlntegrate[
Nlmegrate[

r/Pi*((Sig 1*fl nor+Sig2*f2nor)/(SPnor*SigMax))^m, {r,0,Rs }], {t,
0,Pi/4 }], {t 1,0,Pi }])^(- l/m)

(*COPLANAR ENERGY RELEASE RATE: *)
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cspressdiskcoplanar=(
Nlntegrate[
8*Nlntegrate[

NIntegrate[
r/Pi*((((Sig1*CosIt1]62+Sig2*Sin[t1]62)62+

y2A2/Y1A2/4*(Sigl-Sig2)A2*
Sin[2*t1]A2)A0.5)/(SPcoplanar*SigMax))A

m,{r,0,Rs}],{t,0,Pi/4}],{t1,0,Pi}])A(-l/m)

(* NONCOPLANARENERGYRELEASERATE:*)

cspressdisknoncop=(
Nlntegrate[
8*Nlmegrate[

NIntegrate[
r/Pi*(((SigNA4+6*y2A2/y162*SigNA2*SigSA2+

y2A4/Y1A4*SigSA4)A0.25)/(SPnoncop,SigMax))A
m,{r,0,Rs}],{t,0,Pi/4}],{t1,0,Pi}])A(-1/m)

(* HOOPSTRESSFACTOR:*)

cspressdiskHoop=(
NIntegrate[
2*8*NIntegrate[

NIntegrate[
r/Pi*((860.5"(2"SigN+6*(SigN62+8*y262/y162"SigSA2)A0.5)*y2A3*

SigS63/(
y1A2*SigNA2+12*y2A2*SigS^2-
YI*SigN*(

Y162"SigN^2+8*y262*SigS62)60.5)61.5)/(
SPhoop*SigMax))Am,{r,0.04,Rs}],{t,0,Pi/4}],{t1,0.005,

0.998"Pi/2}])^(-i/m)

time=TimeUsed[]/60
memor=MemoryInUse[]
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APPENDIX H" CODE FOR ESTIMATION OF THE CHARACTERISTIC

STRENGTH OF ANISOTROPIC DISK TEST SPECIMENS

The characteristic strength of disk test specimens exhibiting elastic and strength anisotropy can

be determined from uniaxial test data and the following program, which is written in the

Mathematica ® Programming Language TM. The Mathematica code has two main parts" that

calculating stresses at any Cartesian location and that determining the characteristic strength of

the disk test specimens. The scale parameter constants as estimated from the code in Appendix

E are used as input to this code.

The disk test specimen is subjected to a uniform pressure within a circular support of diameter

less than or equal to that of the disk periphery. Any plate radius, thickness and pressure can be

specified, however, the solution assumes that the plate is thin and the displacements small. The

code was used to calculate the characteristic strengths of the NiAI specimens with the

assumptions of elastic and strength anisotropy (i.e. section 5.3.3).

ESTIMATION OF THE CHARACTERISTIC STRENGTH OF DISK TEST SPECIMEN,_°

ASSUMING ELASTIC AND STRENGTH ANISOTROPY

(* ESTIMATION OF SCALE PARAMETER *)

(* WEIBULL MODULUS *)
m=5.5

(*STRESS INTENSITY FACTOR COEFFICIENTS:*)

Y1=(pi)A0.5
Y2=(Pi)^0.5

(* DISK DIMENSIONS *)

Rs= 11.592
Rd=25.229/2
v=0.31
h = 1.495

(* DISK STRESSES FROM OKUBU'S APPROXIMATE SOLUTION*)

$11=1.0428"10A-5;

14Mathematica 3.0, Wolfram Research, Champaign, Illinois.
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$22= 1.0428" 10^-5;

S 12=-0.421"10^-5;
$44=0.892"10^-5;

b 11=$22/(S 11 *$22-S 12^2);

b22=S 11/(S 11"$22-S 12^2);
b12=-S 12/(S 11"$22-S 12^2);
b66=1/$44;

(* Plate stiffness in Okubu's Notation: *)
D 1=h^3"$22/(12,(S 11 *$22-S 12^2));

D2=h^3*(-S 12)/(12"(S 11 *$22-S 12^2));
D3=h^3*S 11/(12"(S 11 *$22-S 12^2));
D4=h^3/(6*S44);

DD=(3*Dl+2*D2+2*D4+3,D3)/8;

k=(7 *D 1+ 10*D2+ 6 *D4+7 *D3)/(2" (D 1+2 *D2+D3));
x=(r^2/(1 +Tan[t]^2))^0.5;
y=x*Tan[t];
a=Rs;

(* Cartesian Strains *)

e 11=h/2* (2*aA2*(k+ 1)- 12*xA2-4*yA2)/(64*DD);
e22=h/2 *(2 *a^2 *(k+ 1)- 12*y^2-4 *x^2)/( 64 *DD);
e6=-h*x*y/(8*DD);

(* Cartesian Stresses *)

Sigl 1=b 11 *e 11+b 12"e22;
Sig22=bl 2*e 11 +b22*e22;

Sig12=b66*e6;

Sig2=Sigl 1*Cos[t]^2+Sig22*Sin[t]A2+Sig12,Sin[2,t];
S ig 1=S ig22 *Cos[t] ^ 2+S ig 11 *S in[t]^2-S ig 12*S in[ 2*t];
SigMax=h*aA2*(k+ 1)/(64*DD)*(b 11+b 12);

(* SCALE PARAMETER FUNCTION FOR PIA AND MAX PRINCIPAL FAILURE CRITERION *)

SPpia 1=2516*Cos [2*t]n2+ 1574*Sin[2*t]n2

SPpia2=2516*Cos [2*tin2+ 1574*Sin[2*t]n2
flpia'-I
f2pia=l

(* ESTIMATION OF CHARACTERISTIC STRENGTH BY MAX PRINCIPAL CRITERION *)
cspressdiskmaxprin=(

NIntegrate[

NIntegrate [r*((Sig 1*fl pia/(SPpia 1*SigMax))nm), {r,0,Rs }], {t,0,
2*Pi }])n(-1/m)

(* ESTIMATION OF CHARACTERISTIC STRENGTH BY PIA PRINCIPAL CRITERION *)

cspressdiskpia=(
Nlntegrate[

Nlntegrate[

r*((Sig 1*fl pia/(SPpia 1*SigMax))Am+(Sig2,f2pia/(S Ppia2,SigMax))Am) ' {
r,0,Rs }], {t,0,2*Pi }])6(- l/m)

(* SCALE PARAMETER FUNCTION FOR NORMAL STRESS CRITERION *)
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flnor=Cos[tl]^2
f2nor=Sin[tl]^2
t2=t+tl
SPnor=4038*Cos[2*t2]^2+976*Sin[2,t2]^2

(* ESTIMATIONOFCHARACTERISTICSTRENGTHBYNORMALSTRESSCRITERION*)

cspressdisknormal=(
Nlntegrate[
8*Nlntegrate[

Nlntegrate[
r/Pi*((Sig1*fl nor+Sig2*f2nor)/(SPnor*SigMax))^m,{r,0,Rs}],{t,0,
Pi/4}],{tl,0,Pi}])^(-l/m)
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